Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chain propagating electron transfer

In this section a brief review of quantum-chemical studies on the electron structure of the active center and the nature of the elementary steps of the chain propagation and transfer reactions for olefin polymerization is given. [Pg.89]

In the light-induced initiation step of the chain mechanism 2-nitropropyl anion transfers an electron to 1 yielding the corresponding radical anion 3. Bromide is expelled to give cyclo-proyl radical 5 via allylic radical 4. Reaction with 2-nitropropyl anion yields the radical anion 6 that propagates the chain by electron transfer to 1 with formation of product 2. ... [Pg.946]

Kinetics of the reaction of p-nitrochlorobenzene with the sodium enolate of ethyl cyanoacetate are consistent with this mechanism. Also, radical scavengers have no effect on the reaction, contrary to what would be expected for a chain mechanism in which aryl radicals would need to encounter the enolate in a propagation step. The reactant, /i-nitrophenyl chloride, however, is one which might also react by the addition-elimination mechanism, and the postulated mechanism is essentially the stepwise electron-transfer version of this mechanism. The issue then becomes the question of whether the postulated radical pair is a distinct intermediate. [Pg.732]

The ceric ion also is also known to trap carbon-centered radicals (initiator-derived species, propagating chains) by single electron transfer (Scheme 3.60). [Pg.106]

Two pathways for the reaction of sulfate radical anion with monomers have been described (Scheme 3.81).252 These are (A) direct addition to the double bond or (B) electron transfer to generate a radical cation. The radical cation may also be formed by an addition-elimination sequence. It has been postulated that the radical cation can propagate by either cationic or a radical mechanism (both mechanisms may occur simultaneously). However, in aqueous media the cation is likely to hydrate rapidly to give a hydroxyelhyl chain end. [Pg.129]

SRNl substitution include ketone enolates,183 ester enolates,184 amide enolates,185 2,4-pentanedione dianion,186 pentadienyl and indenyl carbanions,187 phenolates,188 diethyl phosphite anion,189 phosphides,190 and thiolates.191 The reactions are frequently initiated by light, which promotes the initiating electron transfer. As for other radical chain processes, the reaction is sensitive to substances that can intercept the propagation intermediates. [Pg.1055]

This oxidative process has been successful with ketones,244 esters,245 and lactones.246 Hydrogen peroxide can also be used as the oxidant, in which case the alcohol is formed directly.247 The mechanisms for the oxidation of enolates by oxygen is a radical chain autoxidation in which the propagation step involves electron transfer from the carbanion to a hydroperoxy radical.248... [Pg.1140]

The very fact that the A-to-D conversion is a downhill process implies that a chain reaction may take place in the solution, in parallel to the electrode process (Scheme 2.12). After initiation by an electron (or a hole) coming from the electrode, the propagation loop involves the conversion of B into C and the oxidation of the latter by A. When > c, the solution electron transfer is a downhill reaction, whereas for , B < , c, it is an uphill reaction. It may, nevertheless, interfere in the latter case since the entire process is pulled by the B/C reaction. As sketched in Scheme 2.10, the interference of the solution electron transfer is more important for slower B/C conversion. More precisely, the factor governing the interference of the solution electron transfer is the same as in the ECE-DISP problem discussed in Section 2.2.4 (kecPA/ (Fv/ R-T)1/2. Apparently, disconcerting phenomena take place upon interference of the solution electron transfer, such as dips in the current-potential trace when (Figure 2.25a ) and trace crossing... [Pg.121]

Solomon (3, h, 5.) reported that various clays inhibited or retarded free radical reactions such as thermal and peroxide-initiated polymerization of methyl methacrylate and styrene, peroxide-initiated styrene-unsaturated polyester copolymerization, as well as sulfur vulcanization of styrene-butadiene copolymer rubber. The proposed mechanism for inhibition involved deactivation of free radicals by a one-electron transfer to octahedral aluminum sites on the clay, resulting in a conversion of the free radical, i.e. catalyst radical or chain radical, to a cation which is inactive in these radical initiated and/or propagated reactions. [Pg.471]

An increase in the cA-stilbene concentration favors the chain propagation and decreases the probability of termination when the DCNA anion-radicals react with the stilbene cation-radicals. A decrease in the irradiation intensity has a similar effect The chain propagation is the first-order process, whereas termination of the chains is the second-order process. A temperature rise accelerates the accumulation of the stilbene cation-radicals. In this system, the free energy of electron transfer is -53- —44 kJ moD (the cation-radical generation is in fact an endothermal process). If a polar solvent is substituted for a nonpolar one, the conversion of the cii-stilbene cation-radical into the trani-stilbene cation-radical deepens. Polar solvents break ion pairs, releasing free ion-radicals. The cA-stilbene cation-radicals isomerize more easily on being released. The stilbene cation-radical not shielded with a counterion has a more positive charge, and therefore, becomes stabilized in the... [Pg.294]

One important feature of ion-radical organic reactions consists of a possibility to nudge them by the introduction of active reactants. Thus, in the reaction of an electron acceptor with electron donors (nucleophiles), the addition of a tiny amount of a nucleophile, which is more active at initiation of the one-electron transfer allows the less reactive nucleophile to start its own chain propagation. A method called entrainment is widely used in chemical practice as a recent example (see Schmidt et al. 2007). [Pg.316]

The degree of polymerization depends on the duration of the process. After 7 min, the molecular mass is equal to 9400 (the polydispersity index is 5.30). When the reaction is carried out for 15 min, the molecular mass of the polymer increases to 37,000 and the polydispersity index reaches 7.31 (Bauld et al. 1996). Depending on whether cation-radical centers arise at the expense of intramolecular electron transfer or in a stepwise intermolecular lengthening, polymerization can occur, respectively, through a chain or a step-growth process (Bauld and Roh 2002). In the reaction depicted in Scheme 7.17, both chain and step-growth propagations are involved. [Pg.361]

Electroreductive one-electron initiation of cyclization was described for the series of E,E-, 1-dibenzoyl-l,6-heptadiene and its derivatives (Roh et al. 2002, Felton and Bauld 2004). In this case, the catalytic effect was also observed (the actual consumption of electricity was substantially less than theoretical). The same bis(enones) can also be cyclized on the action of the sodium salt of chrysene anion-radical in THF, but with no catalytic effect. Optimum yields were obtained only when 70-120 mol% of the initiator was used, relative to a substrate (Yang et al. 2004). The authors suggest that tight ion pairing of the sodium cation with the product anion-radical in THF (which is a somewhat nonpolar solvent) slows down the intermolecular electron transfer to the bis(enone) molecules. Such an electron transfer would be required for chain propagation. [Pg.370]

As exemplified in Figure 2, Type 1 mechanism, electron transfer from L to sens yields two radicals, the substrate radical, L", and the sensitizer radical anion (sens ). In the next step, the lipid radical may induce a chain peroxidation cascade involving propagation reactions -The sensitizer radical anion may also start a sequential one-electron reduction of 2 generating HO in the presence of reduced transition metals. As a result, this may lead to abstraction of a lipid allylic hydrogen with subsequent generation of a carbon-centered lipid radical, L, that is rapidly oxidized to a peroxyl radical (vide supra). [Pg.948]

Chain-breaking antioxidants which interfere with the normal propagation processes may react with peroxy radicals, R02 or, more rarely, with the carbon radical, R. The antioxidant may react with the propagating radical by addition, by hydrogen transfer, or by electron transfer. The chain can be terminated directly, but more commonly a new radical is formed, which either continues the chain at a reduced rate or terminates a second chain. [Pg.307]

An inhibition mechanism involving electron transfer between a chain-propagating radical and the antioxidant has frequently been suggested but has rarely been identified with any certainty. This process remains one of the least understood of all inhibition mechanisms. Probably the most clear-cut example of inhibition by one electron transfer (either partial or complete) has come from studies of metal-catalyzed oxidations. Many workers have reported that under certain conditions transition metals may inhibit rather than catalyze oxidations. Cobalt, manganese, and copper are particularly prominent in this respect. [Pg.310]

More recently it has been shown (6, 7) that zinc dialkyl dithiophosphates also act as chain-breaking inhibitors. Colclough and Cunneen (7) reported that zinc isopropyl xanthate, zinc dibutyl dithiocarbamate, and zinc diisopropyl dithiophosphate all substantially lowered the rate of azobisisobutyronitrile-initiated oxidation of squalene at 60°C. Under these conditions, hydroperoxide chain initiation is negligible, and it was therefore concluded that inhibition resulted from removal of chain-propagating peroxy radicals. Also, consideration of the structure of these zinc dithioates led to the conclusion that no suitably activated hydrogen atom was available, and it was suggested that inhibition could be accounted for by an electron-transfer process as follows ... [Pg.333]


See other pages where Chain propagating electron transfer is mentioned: [Pg.461]    [Pg.271]    [Pg.461]    [Pg.271]    [Pg.1075]    [Pg.1075]    [Pg.210]    [Pg.237]    [Pg.239]    [Pg.272]    [Pg.98]    [Pg.7]    [Pg.400]    [Pg.139]    [Pg.278]    [Pg.137]    [Pg.160]    [Pg.213]    [Pg.78]    [Pg.2]    [Pg.76]    [Pg.85]    [Pg.86]    [Pg.89]    [Pg.91]    [Pg.95]    [Pg.120]    [Pg.23]    [Pg.80]    [Pg.130]    [Pg.332]    [Pg.153]    [Pg.869]   


SEARCH



Chain propagating

Chain propagation

Chain propagator

Electron chain

Electron propagation

Electron propagator

Electron transfer chain

© 2024 chempedia.info