Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chain polymerization monomer concentrations

In the first kind of steady state in chain polymerization, the concentration of active spedes (active centers) is approximately constant that is, they are formed fast in comparison with the rate of chain propagation and do not disappear (are not killed ) at least in the time when the monomer is mostly consumed. [Pg.8]

Various techniques have been studied to increase sohds content. Hydroxy-functional chain-transfer agents, such as 2-mercaptoethanol [60-24-2], C2HgOS, reduce the probabihty of nonfunctional or monofunctional molecules, permitting lower molecular-weight and functional monomer ratios (44). Making low viscosity acryhc resins by free-radical initiated polymerization requires the narrowest possible molecular-weight distribution. This requires carehil control of temperature, initiator concentration, and monomer concentrations during polymerization. [Pg.338]

Polymerization processes are characterized by extremes. Industrial products are mixtures with molecular weights of lO" to 10. In a particular polymerization of styrene the viscosity increased by a fac tor of lO " as conversion went from 0 to 60 percent. The adiabatic reaction temperature for complete polymerization of ethylene is 1,800 K (3,240 R). Heat transfer coefficients in stirred tanks with high viscosities can be as low as 25 W/(m °C) (16.2 Btu/[h fH °F]). Reaction times for butadiene-styrene rubbers are 8 to 12 h polyethylene molecules continue to grow lor 30 min whereas ethyl acrylate in 20% emulsion reacts in less than 1 min, so monomer must be added gradually to keep the temperature within hmits. Initiators of the chain reactions have concentration of 10" g mol/L so they are highly sensitive to poisons and impurities. [Pg.2102]

The very small number of growing polymer chains, when compared to the monomer concentration results in a very low overall concentration of free control agent and leads to inefficient capping of chain ends. One solution to this problem is the addition of a free or unbound control agent to the polymerization medium. This can take the form of a low molecular weight alkoxyamine, ATRP initiator, RAFT agent or, alternatively, free deactivator such as nitroxide or Cu(II). This species is often called a sacrificial agent. This solution also leads to the formation of free polymer that must ultimately be removed from the brush. [Pg.562]

Effects of solvent polarity, counter-anion nucleophilidty, temperature, and monomer concentration on the carbenium ion polymerization chemistry have been extensively studied29,36 38,49. Based on previous knowledge26"29 Me3Al was chosen because with this coinitiator undesired chain transfer to monomer processes are absent. Preliminary experiments showed that Et3Al coinitiator did not yield PaMeSt, possibly because the nuc-leophilicity of the counter-anion Et3AlQe is too high and thus termination by hydrida-tion is faster than propagation36. ... [Pg.31]

In a batch reactor, the relative monomer concentrations will change with time because the two monomers react at different rates. For polymerizations with a short chain life, the change in monomer concentration results in a copolymer composition distribution where polymer molecules formed early in the batch will have a different composition from molecules formed late in the batch. For living polymers, the drift in monomer composition causes a corresponding change down the growing chain. This phenomenon can be used advantageously to produce tapered block copolymers. [Pg.489]

This is a free-radical polymerization with short chain lives. The first molecules formed contain nearly 58 mol% styrene when there is only 50% styrene in the monomer mixture. The relative enrichment of styrene in the polymer depletes the concentration in the monomer mixture, and both the polymer and monomer concentrations drift lower as polymerization proceeds. If the reaction went to completion, the last 5% or so of the polymer would be substantially pure polyacrylonitrile. [Pg.491]

We shall use Rp to represent the rate of polymerization as well as the rate of propagation, therefore. According to Eq. (12), the rate of polymerization should vary as the square root of the initiator concentration. If/ is independent of the monomer concentration, which will almost certainly be true if / is near unity, the conversion of monomer to polymer will be of the first order in the monomer concentration. On the other hand, if / should be substantially less than unity, it may then depend on the concentration of monomer in the extreme case of a very low efficiency, / might be expected to vary directly as [M whereupon the chain radical concentration becomes proportional to Mand the polymerization should be three-halves order in monomer. [Pg.114]

Species present during polymerization Monomer, polymer and propagating chains (at very low concentration) Monomer, dimer, trimer, oligomer, polymer... [Pg.54]

In solution polymerization, monomers mix and react while dissolved in a suitable solvent or a liquid monomer under high pressure (as in the case of the manufacture of polypropylene). The solvent dilutes the monomers which helps control the polymerization rate through concentration effects. The solvent also acts as a heat sink and heat transfer agent which helps cool the locale in which polymerization occurs. A drawback to solution processes is that the solvent can sometimes be incorporated into the growing chain if it participates in a chain transfer reaction. Polymer engineers optimize the solvent to avoid this effect. An example of a polymer made via solution polymerization is poly(tetrafluoroethylene), which is better knoivn by its trade name Teflon . This commonly used commercial polymer utilizes water as the solvent during the polymerization process,... [Pg.55]

Attempts to channel the polymerization toward linear chain growth have concentrated on the observed kinetic preference for addition of one monomer unit at a time to the growing chain (Eq 3). [Pg.227]


See other pages where Chain polymerization monomer concentrations is mentioned: [Pg.564]    [Pg.483]    [Pg.34]    [Pg.277]    [Pg.278]    [Pg.282]    [Pg.65]    [Pg.245]    [Pg.80]    [Pg.524]    [Pg.828]    [Pg.16]    [Pg.191]    [Pg.200]    [Pg.208]    [Pg.424]    [Pg.491]    [Pg.161]    [Pg.159]    [Pg.189]    [Pg.185]    [Pg.209]    [Pg.425]    [Pg.559]    [Pg.596]    [Pg.39]    [Pg.434]    [Pg.346]    [Pg.893]    [Pg.96]    [Pg.114]    [Pg.224]    [Pg.342]    [Pg.196]    [Pg.93]    [Pg.123]    [Pg.203]    [Pg.11]    [Pg.46]    [Pg.27]   
See also in sourсe #XX -- [ Pg.36 ]




SEARCH



Monomer concentration

Monomers, polymerization

© 2024 chempedia.info