Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic reaction equilibrium barrier

Overall, allylic isomerization in the dodecatrienediyl-Ni11 complex is predicted to require a distinctly lower barrier than for reductive elimination (AAG > 5.5kcalmol 1, see Section 4.6). This leads to the conclusion, that isomerization should be significantly more facile than the subsequent reductive elimination, which is confirmed by NMR investigations of the stoichiometric reaction.22 Consequently, the several configurations and stereoisomers of the bis(allyl),A-/restablished equilibrium, with 7b as the prevalent form. The various bis(r 3-allyl),A-/n2H.v stereoisomers of 7b are found to be close in energy, while bis(allyl), A-cf.v forms are shown to be negligibly populated (cf. Section 4.4) and therefore play no role within the catalytic reaction course. [Pg.190]

This chapter is intended to focus on catalysis in both thermal and photoinduced electron transfer reactions between electron donors and acceptors by investigating the effects of an appropriate substance that can reduce the activation barrier of electron transfer reactions. It is commonly believed that a catalyst affects the rate of reaction but not the point of equilibrium of the reaction. Thus, a substance is said to act as a catalyst in a reaction when it appears in the rate equation but not in the stoichiometric equation. However, autocatalysis involves a product acting as a catalyst. In this chapter, a catalyst is simply defined as a substance which affects the rate of reaction. This is an unambiguous classification, albeit not universally accepted, including a variety of terms such as catalyzed, sensitized, promoted, accelerated, enhanced, stimulated, induced, and assisted. Both thermal and photochemical redox reactions which would otherwise be unlikely to occur are made possible to proceed efficiently by the catalysis in the electron transfer steps. First, factors that accelerate rates of electron transfer are summarized and then each mechanistic viability is described by showing a number of examples of both thermal and photochemical reactions that involve catalyzed electron transfer processes as the rate-determining steps. Catalytic reactions which involve uncatalyzed electron transfer steps are described in other chapters in this section [66-68]. [Pg.2380]

A catalyst is a material that increases the rate of both the forward and reverse reactions of a reaction step, with no net consumption or generation of catalyst by the reaction. A catalyst does not affect the reaction thermodynamics, i.e., the equilibrium composition or the heat of reaction. It does, however, affect the temperature sensitivity of the reaction rate by lowering the activation energy or the energy barrier on the reaction pathway from reactants to products. This allows the reaction to occur faster than the corresponding uncatalyzed reaction at a given temperature. Alternatively, catalytic reactions can proceed at lower temperatures than the corresponding noncatalytic reactions. For a network of reactions, the catalyst is often used to speed up desired reactions and/or to slow down undesired reactions for improved selectivity. On the basis of catalysis, reactions can be further classified into... [Pg.9]

The catalytic role of the oxide surface can be seen in terms of forming or providing oxygen in an activated state, which then permits a new reaction pathway characterized by a lower energy barrier, with the other reactants either in the gas phase or as an adsorbed species on the surface. Such reactions may modify both the electronic levels and the surface structure of the oxide, but it should be kept in mind that for a catalyst such modification will reach a dynamic equilibrium in which restoration of electrons and replenishment of vacancies by oxygen must balance their removal by reaction products. In this sense, many of the model systems studied are unrealistic since the changes to the surface are irreversible. [Pg.111]

Salt induced peptide formation [108] is based on a dehydrating activity of concentrated NaCl solutions in which free water molecules are less available, which drives the equilibrium towards peptide formation. This change in the thermodynamic barrier is coupled to a decrease of the kinetic barrier owing to the addition of a Cu(II) salt catalyst. A complex of copper with two amino acid ligands 14 has been proposed to be responsible for the catalytic process. In this way, the reaction between two amino acid ligands leading to peptide bond formation can take place intramolecularly ... [Pg.86]

The efficiency of fuel cells is largely limited by the kinetic barriers of the surface catalytic electrode reactions. In particular, the electroreduction of molecular oxygen at a PEMFC cathode severely limits high reaction rates and hence currents near the equilibrium cell voltage. [Pg.183]

Fig. 25.2. Analysis of the catalytic activity and the inactivation of a-chymotrypsin at the single-molecule level, (a) Detection of single enzymatic turnover events of a-chymotrpysin. The fluorogenic substrate (suc-AAPF)2-rhodamine 110 is hydrolyzed by a-chymotrypsin, yielding the highly fluorescent dye rhodamine 110. (b) Representative intensity time trace for an individual a-chymotrypsin molecule undergoing spontaneous inactivation imder reaction conditions, (c) Inactivation trace for the intensity time transient in (b), obtained by counting the amount of turnover peaks in (b) in 10 s intervals. After approximately 1000 s, the enzyme deactivates through a transient phase with discrete active and inactive states, (d) Proposed model for the inactivation process. An initial active state is in equilibrium with an inactive state. This inactive state converts to another inactive state irreversibly whereby the corresponding active state has a lower activity than the previous one. All the transitions involved have energy barriers that can be overcome spontaneously at room temperature... Fig. 25.2. Analysis of the catalytic activity and the inactivation of a-chymotrypsin at the single-molecule level, (a) Detection of single enzymatic turnover events of a-chymotrpysin. The fluorogenic substrate (suc-AAPF)2-rhodamine 110 is hydrolyzed by a-chymotrypsin, yielding the highly fluorescent dye rhodamine 110. (b) Representative intensity time trace for an individual a-chymotrypsin molecule undergoing spontaneous inactivation imder reaction conditions, (c) Inactivation trace for the intensity time transient in (b), obtained by counting the amount of turnover peaks in (b) in 10 s intervals. After approximately 1000 s, the enzyme deactivates through a transient phase with discrete active and inactive states, (d) Proposed model for the inactivation process. An initial active state is in equilibrium with an inactive state. This inactive state converts to another inactive state irreversibly whereby the corresponding active state has a lower activity than the previous one. All the transitions involved have energy barriers that can be overcome spontaneously at room temperature...
Catalysis relies on changes in the kinetics of chemical reactions. Thermodynamics acts as an arrow to show the way to the most stable products, but kinetics defines the relative rates of the many competitive pathways available for the reactants, and can therefore be used to make metastable products from catalytic processes in a fast and selective way. Indeed, catalysts work by opening alternative mechanistic routes with lower activation energy barriers than those of the noncatalyzed reactions. As an example, Figure 1 illustrates how the use of metal catalysts facilitates the dissociation of molecular oxygen, and with that the oxidation of carbon monoxide. Thanks to the availability of new pathways, catalyzed reactions can be carried out at much faster rates and at lower temperatures than noncatalyzed reactions. Note, however, that a catalyst can shorten the time needed to achieve thermodynamic equilibrium, but cannot shift the position of that equilibrium, and therefore cannot catalyze a thermodynamically unfavorable reaction. ... [Pg.1494]


See other pages where Catalytic reaction equilibrium barrier is mentioned: [Pg.214]    [Pg.244]    [Pg.149]    [Pg.177]    [Pg.1]    [Pg.165]    [Pg.557]    [Pg.237]    [Pg.227]    [Pg.345]    [Pg.228]    [Pg.202]    [Pg.360]    [Pg.93]    [Pg.15]    [Pg.244]    [Pg.172]    [Pg.213]    [Pg.100]    [Pg.309]    [Pg.691]    [Pg.263]    [Pg.78]    [Pg.276]    [Pg.115]    [Pg.481]    [Pg.691]    [Pg.974]    [Pg.513]    [Pg.363]    [Pg.219]    [Pg.232]    [Pg.3]    [Pg.208]    [Pg.480]    [Pg.974]    [Pg.468]    [Pg.468]    [Pg.122]    [Pg.22]    [Pg.676]   
See also in sourсe #XX -- [ Pg.214 ]




SEARCH



Barriers, reaction

Catalytic reaction equilibrium

© 2024 chempedia.info