Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic reaction characterization

A tremendous amount of work has been done to delineate the detailed reaction mechanisms for many catalytic reactions on well characterized surfaces [1, 45]. Many of tiiese studies involved impinging molecules onto surfaces at relatively low pressures, and then interrogating the surfaces in vacuum with surface science teclmiques. For example, a usefiil technique for catalytic studies is TPD, as the reactants can be adsorbed onto the sample in one step, and the products fonned in a second step when the sample is heated. Note that catalytic surface studies have also been perfonned by reacting samples in a high-pressure cell, and then returning them to vacuum for measurement. [Pg.302]

As a reactant molecule from the fluid phase surrounding the particle enters the pore stmcture, it can either react on the surface or continue diffusing toward the center of the particle. A quantitative model of the process is developed by writing a differential equation for the conservation of mass of the reactant diffusing into the particle. At steady state, the rate of diffusion of the reactant into a shell of infinitesimal thickness minus the rate of diffusion out of the shell is equal to the rate of consumption of the reactant in the shell by chemical reaction. Solving the equation leads to a result that shows how the rate of the catalytic reaction is influenced by the interplay of the transport, which is characterized by the effective diffusion coefficient of the reactant in the pores, and the reaction, which is characterized by the first-order reaction rate constant. [Pg.171]

This article will be devoted to analysis of some specific features of the kinetics of coupled heterogeneous catalytic reactions and to experimental results and conclusions derived from them, which were obtained by the present author and his coworkers. The general discussion of the kinetics of complicated reaction systems will be restricted to a brief characterization of fundamental approaches the survey of experimental works of other... [Pg.2]

Catalyst films for electrochemical promotion studies should be thin and porous enough so that the catalytic reaction under study is not subject to internal mass-transfer limitations within the desired operating temperature. Thickness below 10 pm and porosity larger than 30% are usually sufficient to ensure the absence of internal mass-transfer limitations. Several SEM images of such catalyst films have been presented in this book. SEM characterization is very important in assessing the morphological suitability of catalyst films for electrochemical promotion studies and in optimizing the calcination procedure. [Pg.544]

Such arylations are characterized by a general order of leaving group ability in which the bromine is better than chlorine and much more than fluorine. Therefore, such catalytic reactions seem to be well adapted for a synthetic use of aryl bromides. [Pg.243]

This complex and structurally related molecules served as a functional homogeneous model system for commercially used heterogeneous catalysts based on chromium (e.g. Cp2Cr on silica - Union Carbide catalyst). The kinetics of the polymerization have been studied to elucidate mechanistic features of the catalysis and in order to characterize the potential energy surface of the catalytic reaction. [Pg.153]

In the following review we will focus on two classes of systems dispersed metal particles on oxide supports as used for a large variety of catalytic reactions and a model Ziegler-Natta catalyst for low pressure olefin polymerization. The discussion of the first system will focus on the characterization of the environment of deposited metal atoms. To this end, we will discuss the prospects of metal carbonyls, which may be formed during the reaction of metal deposits with a CO gas phase, as probes for mapping the environment of deposited metal atoms [15-19]. [Pg.118]

The methods available for synthesis have advanced dramatically in the past half-century. Improvements have been made in selectivity of conditions, versatility of transformations, stereochemical control, and the efficiency of synthetic processes. The range of available reagents has expanded. Many reactions involve compounds of boron, silicon, sulfur, selenium, phosphorus, and tin. Catalysis, particularly by transition metal complexes, has also become a key part of organic synthesis. The mechanisms of catalytic reactions are characterized by catalytic cycles and require an understanding not only of the ultimate bond-forming and bond-breaking steps, but also of the mechanism for regeneration of the active catalytic species and the effect of products, by-products, and other reaction components in the catalytic cycle. [Pg.1338]

Hydroformylation and subsequent hydrogenation of C=C and -CHO groups of PBD appear to be an appropriate means whereby a pendent hydroxy group can be introduced onto the polymer backbone. A variety of partially hydroformyl ated (2-20%) and hydroxymethy-lated polymers have been synthesized by a two-step catalytic reaction and characterized by I.R. and 1H N.M.R. spectroscopy. As expected, the hydrophilic group, OH, in the polymer resulted in a greater decrease in the intrinsic viscosity as compared to the HPBD. [Pg.393]

It is not clear whether the X anion remains ligated to the palladium(II) center. For example, for acetic acid, the palladium hydride was initially postulated as being HPd(OAc)L ,377,378 but more recently as HPdL +.367 To date, none of these complexes has been characterized.367 Oxidative addition of acetic acid or formic acid to a palladium(O) complex in DMF affords a cationic palladium hydride /ruw.v-I IPd(PPh3)2(DMF)+, with an acetate or a formate counter-anion. Both reactions are reversible and involve an unfavorable equilibrium so that a large excess of acid is required for the quantitative formation of the palladium hydride complex.379 This allows us to conclude that the catalytic reactions initiated by reaction of palladium(O) and acetic acid (or formic acid) proceed via a cationic palladium hydride trans-HPdfPPtHWDMF)"1", when they are performed in DMF.379... [Pg.586]

Ideally, those molecules that are involved in the catalytic reaction should be the best characterizers of catalytic sites. Indeed, the path of the development of organic reaction mechanisms is paved with clever examples of stereochemistry and isotopic substitution that reveal the nature of activated complexes and intermediates and allow the unambiguous interpretation of the stereorelations... [Pg.7]

Effectiveness Factors for Hougen-Watson Rate Expressions. The discussion thus far and the vast majority of the literature dealing with effectiveness factors for porous catalysts are based on the assumption of an integer-power reaction rate expression (i.e., zero-, first-, or second-order kinetics). In Chapter 6, however, we stressed the fact that heterogeneous catalytic reactions are more often characterized by more complex rate expressions of the Hougen-Watson type. Over a narrow range of... [Pg.455]

This situation is termed pore-mouth poisoning. As poisoning proceeds the inactive shell thickens and, under extreme conditions, the rate of the catalytic reaction may become limited by the rate of diffusion past the poisoned pore mouths. The apparent activation energy of the reaction under these extreme conditions will be typical of the temperature dependence of diffusion coefficients. If the catalyst and reaction conditions in question are characterized by a low effectiveness factor, one may find that poisoning only a small fraction of the surface gives rise to a disproportionate drop in activity. In a sense one observes a form of selective poisoning. [Pg.464]

It is the reaction characterized by fc2(lim) that exhibits the specificity toward the position of the phenyl group substituent, and is responsible for the accelerated rates of appearance of phenol. The rate-limiting step of the overall reaction, however, is the hydrolysis of the acyl-cycloamylose. The overall reaction, then, will be catalytic only if k3 exceeds the rate constant for the alkaline hydrolysis of a particular ester. This situation is true only for highly unreactive esters. If, therefore, the cycloamyloses are to be uti-... [Pg.230]

We will describe first the different methods of immobilization of catalysts, and highlight their advantages and disadvantages and their fields of application. We will then examine the properties of such supported complexes for the major classes of catalytic reactions. We will focus mainly on those studies where at least some characterization of the supported catalyst is given, unless the catalytic properties of the described system are outstanding the review is therefore far from being exhaustive. Finally, where possible, we will mention tests of recyclability, which are essential for the supported complex to be as a potential industrial catalyst. [Pg.446]

The complexity and inhomogenicity of catalytic sites of metals and metal oxides make it difficult to interpret the mechanism of catalytic reactions on solid surfaces. Investigations that may lead to a better characterization of adsorbed species on catalytic sites could add much to our understanding of heterogeneous catalysis. [Pg.368]

Catalytic reactions, both homogeneous and heterogeneous, are usually characterized by a diversity of reaction paths and consequently of reaction products. One of the problems encountered in catalytic reactions is that of selectivity control, i.e., how to achieve a high selectivity with respect to a desired reaction product. [Pg.105]

No evidence of ruthenium metal formation was found in catalytic reactions until temperatures above about 265°C (at 340 atm) were reached. The presence of Ru metal in such runs could be easily characterized by its visual appearance on glass liners and by the formation of hydrocarbon products (J/1J) The actual catalyst involved in methyl and glycol acetate formation is therefore almost certainly a soluble ruthenium species. In addition, the observation of predominantly a mononuclear complex under reaction conditions in combination with a first-order reaction rate dependence on ruthenium concentration (e.g., see reactions 1 and 3 in Table I) strongly suggests that the catalytically active species is mononuclear. [Pg.214]

Catalytic reactions in fluidized-bed reactors often involve the use of catalyst particles of different sizes, which may be characterized by a particle-size distribution. Consider the reaction A(g) -> products, for which the following data are available ... [Pg.598]


See other pages where Catalytic reaction characterization is mentioned: [Pg.182]    [Pg.182]    [Pg.938]    [Pg.2788]    [Pg.367]    [Pg.262]    [Pg.186]    [Pg.2]    [Pg.157]    [Pg.269]    [Pg.19]    [Pg.24]    [Pg.32]    [Pg.51]    [Pg.297]    [Pg.263]    [Pg.480]    [Pg.100]    [Pg.1161]    [Pg.257]    [Pg.44]    [Pg.56]    [Pg.119]    [Pg.207]    [Pg.7]    [Pg.232]    [Pg.145]    [Pg.34]    [Pg.402]    [Pg.221]    [Pg.394]   


SEARCH



Catalysts catalytic reactions characterization, 75-96,

Reaction characterization

© 2024 chempedia.info