Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic product formation

The combination of Eqs. (13-16) implies that both reactions are catalytic under aerobic conditions, which, indeed, they are. The kinetics of catalytic product formation established that two different mechanisms operate. For aldehyde or ketone formation a rate law as in Eq. (18) has been established, whereas the 1,2-diol formation follows the rate law Eq. (19). [Pg.201]

In situ spectroscopic measurements of a catalytic system provide a considerable opportunity to determine the chemical species present under reactive conditions. FTIR and NMR have been the two most frequently used in situ spectroscopic methods (see Chapters 2 and 3). They have been successfully used to identify labile, non-isolatable transient species believed to be involved in the catalytic product formation. Furthermore, efforts have been made to use this information in order to obtain more detailed kinetics, by decoupling induction, product formation, and deactivation. Thus, in situ spectroscopic techniques have the potential for considerably advancing mechanistic studies in homogeneous catalysis. [Pg.153]

The role of complexes 23-28 as catalyst precursors in the ring closing metathesis reactions was investigated. Three different diene substrates diethyldiallyl-malonate (29), diallyltosylamine (30). and dielhyldi(2-methylallyl)malonate (31) were added to the NMR tubes containing a solution of 5 mol% of catalyst precursor in an appropriate deuterated solvent. The NMR tubes were then kept at the temperatures reported in Table X. Product formation and diene disappearance were monitored by integrating the allylic methylene peaks in the H NMR spectra and the results are presented in Table X and the catalytic transformations are depicted in Scheme 3. [Pg.202]

A tetracoordinated complex (20)4 was actually isolated. Complex 20 in the presence of ethylene forms the coordinated complex 21, as can be seen from H NMR. Complex 21 is a model of the intermediate for the additional reaction to form C6 dienes. The model catalyst had been shown to be a codimerization catalyst under more severe conditions (high temperature), although the rate of reaction was very slow compared to the practical systems. These studies are extremely useful in demonstrating the basic steps of the codimerization reactions taking place on the Ni atom. The catalytic cycle based on these model complexes as visualized by Tolman is summarized in Scheme 7. A more complete scheme taking into consideration by-product formation can be found in Tolman (40). [Pg.293]

RuCl(PPh3 )3(alkyl) (90). Because of the fact that the orthometallated complex reacts with H2 to re-form HRuCl(PPh3)2, catalytic hydrogenation of olefins can result via such pathways, although product formation via reaction (11) is kinetically preferred (88). [Pg.325]

Figure 12.8 A. 2-PS reaction. B. Surface representations of the CHS (left) and 2-PS (right) active site cavities are shown. The catalytic cysteines (red), the three positions that convert CHS into 2-PS (green), and the substitution that does not affect product formation (blue) are highlighted. C. TLC analysis of CHS, 2-PS, and CHS mutant enzymes. The radiogram shows the radiolabeled products produced by incubation of each protein with [14C]malonyl-CoA and either p-coumaroyl-CoA (C) or acetyl-CoA (A). Numbering of mutants corresponds to CHS with 2-PS numbering in parenthesis. Positions of reaction products and their identities are indicated. Figure 12.8 A. 2-PS reaction. B. Surface representations of the CHS (left) and 2-PS (right) active site cavities are shown. The catalytic cysteines (red), the three positions that convert CHS into 2-PS (green), and the substitution that does not affect product formation (blue) are highlighted. C. TLC analysis of CHS, 2-PS, and CHS mutant enzymes. The radiogram shows the radiolabeled products produced by incubation of each protein with [14C]malonyl-CoA and either p-coumaroyl-CoA (C) or acetyl-CoA (A). Numbering of mutants corresponds to CHS with 2-PS numbering in parenthesis. Positions of reaction products and their identities are indicated.
A reaction mechanism may involve one of two types of sequence, open or closed (Wilkinson, 1980, pp. 40,176). In an open sequence, each reactive intermediate is produced in only one step and disappears in another. In a closed sequence, in addition to steps in which a reactive intermediate is initially produced and ultimately consumed, there are steps in which it is consumed and reproduced in a cyclic sequence which gives rise to a chain reaction. We give examples to illustrate these in the next sections. Catalytic reactions are a special type of closed mechanism in which the catalyst species forms reaction intermediates. The catalyst is regenerated after product formation to participate in repeated (catalytic) cycles. Catalysts can be involved in both homogeneous and heterogeneous systems (Chapter 8). [Pg.155]

Catalysis is a special type of closed-sequence reaction mechanism (Chapter 7). In this sense, a catalyst is a species which is involved in steps in the reaction mechanism, but which is regenerated after product formation to participate in another catalytic cycle. The nature of the catalytic cycle is illustrated in Figure 8.1 for the catalytic reaction used commercially to make propene oxide (with Mo as the catalyst), cited above. [Pg.177]

Catalytic reactions of disubstituted styrenyl substrates diminish oligomeric product formation because of the presence of ethylene. That is, if the initial transformation of the Ru-carbene occurs with the undesired regiochemis-try (e.g., 49->52 in contrast to 49->51, Scheme 13), dimerization and oligomerization may predominate, particularly in situations where reclosure of the carbocyclic ring is relatively slow (e.g., cycloheptenyl substrates). In contrast, as illustrated in Scheme 14, in the presence of ethylene atmosphere, the unwanted metal-carbene isomer 52 may rapidly be converted to triene 53. The resulting triene might then react with LnRu=CH2 to afford metal-carbene 51 and eventually chromene 41. [Pg.128]

Different from conventional chemical kinetics, the rates in biochemical reactions networks are usually saturable hyperbolic functions. For an increasing substrate concentration, the rate increases only up to a maximal rate Vm, determined by the turnover number fccat = k2 and the total amount of enzyme Ej. The turnover number ca( measures the number of catalytic events per seconds per enzyme, which can be more than 1000 substrate molecules per second for a large number of enzymes. The constant Km is a measure of the affinity of the enzyme for the substrate, and corresponds to the concentration of S at which the reaction rate equals half the maximal rate. For S most active sites are not occupied. For S >> Km, there is an excess of substrate, that is, the active sites of the enzymes are saturated with substrate. The ratio kc.AJ Km is a measure for the efficiency of an enzyme. In the extreme case, almost every collision between substrate and enzyme leads to product formation (low Km, high fccat). In this case the enzyme is limited by diffusion only, with an upper limit of cat /Km 108 — 109M. v 1. The ratio kc.MJKm can be used to test the rapid... [Pg.133]

The bait and switch methodology deploys a hapten to act as a bait . This bait is a modified substrate that incorporates ionic functions intended to represent the coulombic distribution expected in the transition state. It is thereby designed to induce complementary, oppositely charged residues in the combining site of antibodies produced by the response of the immune system to this hapten. The catalytic ability of these antibodies is then sought by a subsequent switch to the real substrate and screening for product formation, as described above. [Pg.264]

Hence the dimension ("the order") of the reaction is different, even in the simplest case, and hence a comparison of the two rate constants has little meaning. Comparisons of rates are meaningful only if the catalysts follow the same mechanism and if the product formation can be expressed by the same rate equation. In this instance we can talk about rate enhancements of catalysts relative to another. If an uncatalysed reaction and a catalysed one occur simultaneously in a system we may determine what part of the product is made via the catalytic route and what part isn t. In enzyme catalysis and enzyme mimics one often compares the k, of the uncatalysed reaction with k2 of the catalysed reaction if the mechanisms of the two reactions are the same this may be a useful comparison. A practical yardstick of catalyst performance in industry is the space-time-yield mentioned above, that is to say the yield of kg of product per reactor volume per unit of time (e.g. kg product/m3.h), assuming that other factors such as catalyst costs, including recycling, and work-up costs remain the same. [Pg.4]


See other pages where Catalytic product formation is mentioned: [Pg.167]    [Pg.755]    [Pg.363]    [Pg.9]    [Pg.167]    [Pg.755]    [Pg.363]    [Pg.9]    [Pg.75]    [Pg.188]    [Pg.422]    [Pg.422]    [Pg.7]    [Pg.255]    [Pg.267]    [Pg.4]    [Pg.207]    [Pg.251]    [Pg.232]    [Pg.172]    [Pg.27]    [Pg.369]    [Pg.39]    [Pg.92]    [Pg.262]    [Pg.500]    [Pg.209]    [Pg.345]    [Pg.283]    [Pg.122]    [Pg.174]    [Pg.34]    [Pg.208]    [Pg.384]    [Pg.405]    [Pg.366]    [Pg.104]    [Pg.498]    [Pg.73]    [Pg.463]    [Pg.202]    [Pg.29]   
See also in sourсe #XX -- [ Pg.167 ]




SEARCH



Formate production

© 2024 chempedia.info