Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic oxidative cyclization using Palladium

Oxidative addition consumes one equivalent of expensive Pd(OAc)2 in most cases. However, progress has been made towards the catalytic oxidative addition pathway. Knolker s group described one of the first oxidative cyclizations using catalytic Pd(OAc)2 in the synthesis of indoles [19]. They reoxidized Pd(0) to Pd(II) with cupric acetate similar to the Wacker reaction, making the reaction catalytic with respect to palladium [20]. [Pg.3]

Buchwald-Hartwig amination of p-bromotoluene with m-anisidine affords quantitatively the corresponding diarylamine. While oxidative cyclization using stoichiometric amounts of palladium(II) acetate provides only 36 % yield of 7-methoxy-3-methylcarbazole, up to 72 % yield is obtained using catalytic amounts of palladium(II). The highest turnover for the catalytic cycle is obtained with... [Pg.493]

Most of the early applications of palladium to indole chemistry involved oxidative coupling or cyclization using stoichiometric Pd(II). Akermark first reported the efficient oxidative coupling of diphenyl amines to carbazoles 37 with Pd(OAc)2 in refluxing acetic acid [45]. The reaction is applicable to several ring-substituted carbazoles (Br, Cl, OMe, Me, NO2), and 20 years later Akermark and colleagues made this reaction catalytic in the conversion of arylaminoquinones 38 to carbazole-l,4-quinones 39 [46]. This oxidative cyclization is particularly useful for the synthesis of benzocarbazole-6,11-quinones (e.g., 40). [Pg.83]

The phenolic oxygen on 2-allyl-4-bromophenol (7) readily underwent oxypalladation using a catalytic amount of PdCl2 and three equivalents of Cu(OAc)2, to give the corresponding benzofuran 8. This process, akin to the Wacker oxidation, was catalytic in terms of palladium, and Cu(OAc)2 served as oxidant [17]. Benzofuran 10, a key intermediate in Kishi s total synthesis of aklavinone [18], was synthesized via the oxidative cyclization of phenol 9 using stoichiometric amounts of a Pd(II) salt. [Pg.270]

Akermark et al. reported the palladium(II)-mediated intramolecular oxidative cyclization of diphenylamines 567 to carbazoles 568 (355). Many substituents are tolerated in this oxidative cyclization, which represents the best procedure for the cyclization of the diphenylamines to carbazole derivatives. However, stoichiometric amounts of palladium(II) acetate are required for the cyclization of diphenylamines containing electron-releasing or moderately electron-attracting substituents. For the cyclization of diphenylamines containing electron-attracting substituents an over-stoichiometric amount of palladium(II) acetate is required. Moreover, the cyclization is catalyzed by TFA or methanesulfonic acid (355). We demonstrated that this reaction becomes catalytic with palladium through a reoxidation of palladium(O) to palladium(II) using cupric acetate (10,544—547). Since then, several alternative palladium-catalyzed carbazole constructions have been reported (548-556) (Scheme 5.23). [Pg.206]

One of the carbazole-l,4-quinones, 3-methoxy-2-methylcarbazole-l,4-quinone (941), required for the total synthesis of carbazomycin G (269), was already used as a key intermediate for the total synthesis of carbazoquinocin C, and was obtained by the addition of aniline (839) to 2-methoxy-3-methyl-l,4-benzoquinone (939), followed by oxidative cyclization with catalytic amounts of palladium(II) acetate (545,645) (see Schemes 5.124 and 5.125). Similarly, in a two-pot operation, 4-meth-oxyaniline (984) was transformed to 3,6-dimethoxy-2-methylcarbazole-l,4-quinone... [Pg.280]

The relay compound 1025 required for the synthesis of all of these 7-oxygenated carbazole alkaloids was obtained starting from commercially available 4-bromo-toluene (1023) and m-anisidine (840) in two steps and 72% overall yield. Buchwald-Hartwig amination of 4-bromotoluene (1023) with m-anisidine (840) furnished quantitatively the corresponding diarylamine 1024. Oxidative cyclization of 1024 using catalytic amounts of palladium(ll) acetate afforded 3-methyl-7-methoxycarbazole (1025). Oxidation of 1025 with DDQ led to clauszoline-K (98), which, on cleavage of the methyl ether using boron tribromide, afforded 3-formyl-7-hydroxycarbazole (99) (546) (Scheme 5.149). [Pg.288]

Beccalli and coworkers [51] described a similar oxidative cyclization of indoles using catalytic palladium and benzoquinone as the stoichiometric reoxidant (Scheme 9.22). By... [Pg.374]

In 2006, Lu and coworkers [53] described a method for the synthesis of carbazoles using the palladium(ll)-catalysed oxidative Heck reaction (Scheme 9.25). Indole 177 was subjected to catalytic Pd(OAc)2 and 2.1equiv of benzoquinone to afford carbazole 178 in 88% yield. Because the alkene is 1,1-disubstituted, a 5-exo cyclization mode (as seen in Ferreira and Stoltz s [48] indole annulation) is unproductive, and a 6-endo cyclization ultimately occurs. The putative intermediate is then believed to be oxidized to the aromatic carbazole by the excess benzoquinone. When indole 179, featuring a terminal alkene, was treated with these oxidative conditions, a mixture of products from 6-endo cyclization (180) and 5-exo cyclization (and subsequent isomerization and [3+2] cycloaddition, 181) was observed. A variety of substituted carbazoles were obtained by this palladium(n)-catalysed oxidative cyclization. [Pg.376]

Prior to the discovery of the aryl-Heck reaction (Chapter 72), the direct Pd-promoted oxidative cyclization of diaryl amines to carbazoles was well known. In 1975 Akennark reported this reaction (Scheme 1, eqnation 1) [1], In addition, A -phenylanthranUic acid gave carbazole-l-carboxylic acid (60%). Miller and Moock used Pd(OAc)j to cyclize 6-anilino-5,8-dimethylisoquinoIine to eUipticine in low yield [2]. The second advance in this chemistry was reported independently by Bittner [3] and Furukawa [4], who described the Pd-mediated (stoichiometric) oxidative conversion of 2-anilino-l,4-benzoquinones and 2-anilino-l,4-naphthoquinones to the corresponding carbazole-l,4-diones and benzo[ ]carbazole-l,6-diones (equations 2, 3). Furukawa s studies included syntheses of several carbazolequinone alkaloids. In 1995 Akermark and colleagues developed catalytic versions (i.e., using tert-butyl hydrogen peroxide [TBHP] or oxygen) of this cyclization (equation 3) [5,6], which elevated the importance of this palladium oxidative cyclization, mainly because of the expense of Pd(OAc)2. Somewhat earlier, Knbiker used cupric acetate as a reoxidant in a synthesis of carbazole-l,4-quinones [7]. [Pg.600]

In 2011, Yoshikai and Liu developed a Pd(ii)-catalyzed oxidative cyclization reaction of a 2-arylphenol to dibenzofuran derivatives respectively (Scheme 2.27). ° The catalytic system features a simple combination of a palladium(ii) salt and a pyridine ligand and the use of pero g benzoate as an inexpensive and convenient oxidant. In their mechanistic experiments, they showed that the reaction involves Pd(ii)-mediated C-H bond cleavage as the rate-limiting step, which is followed by oxidation to a high-oxidation-state palladium species and subsequent C-O bond-forming reductive elimination. [Pg.24]

In palladium-catalyzed [2 - - 2 - - 2] cycloaddition, arynes can be used as alkyne components. In 1994, Pena, Romero, and co-workers reported palladium-catalyzed homo-[2- -2- -2] cycloaddition of arynes (Scheme 6.9) [12]. The reactions of 2-silylaryl trifluoromethanesulfonates 26 with CsF generated the corresponding arynes 27, which were trimerized in the presence of a catalytic amount of Pd(PPh3)4 or Pd2(dba)3 to afford substituted triphenylenes 28. In the reactions of unsymmetric arynes, moderate to high regioselectivities were observed. A mechanism via pallada-cycle intermediates, generated through the oxidative cyclization of two molecules of arynes, was proposed. [Pg.187]

Dialkylindolines and 1,3-dialkylindoles are formed in poor yield (<10%) from the reaction of ethyl- or phenymagnesium bromide with 2-chloro-N-methyl-N-allylaniline in the presence of catalytic quantities of (bistriphenylphosphine)nickel dichloride.72 In a modification of this procedure, the allyl derivatives can be converted by stoichiometric amounts of tetrakis(triphenylphosphine)nickel into 1,3-dialkylindoles in moderate yield72 (Scheme 43) an initial process of oxidative addition and ensuing cyclization of arylnickel intermediates is thought to occur. In contrast to the nickel system,72 it has proved possible to achieve the indole synthesis by means of catalytic quantities of palladium acetate.73 It is preferable to use... [Pg.340]

The arylamine 780b required for the total synthesis of carbazomycin B (261) was obtained by catalytic hydrogenation, using 10% palladium on activated carbon, of the nitroaryl derivative 784 which was obtained in six steps and 33% overall yield starting from 2,3-dimethylphenol 781 (see Scheme 5.85). Electrophilic substitution of the arylamine 780b with the iron-complex salt 602 provided the iron complex 787 in quantitative yield. The direct, one-pot transformation of the iron complex 787 to carbazomycin B 261 by an iron-mediated arylamine cyclization was unsuccessful, probably because the unprotected hydroxyarylamine moiety is too sensitive towards the oxidizing reaction conditions. However, the corresponding 0-acetyl derivative... [Pg.247]


See other pages where Catalytic oxidative cyclization using Palladium is mentioned: [Pg.710]    [Pg.79]    [Pg.445]    [Pg.445]    [Pg.499]    [Pg.159]    [Pg.141]    [Pg.358]    [Pg.475]    [Pg.489]    [Pg.159]    [Pg.90]    [Pg.74]    [Pg.223]    [Pg.224]    [Pg.230]    [Pg.235]    [Pg.225]    [Pg.263]    [Pg.36]    [Pg.94]    [Pg.367]    [Pg.375]    [Pg.16]    [Pg.264]    [Pg.261]    [Pg.165]    [Pg.21]    [Pg.815]    [Pg.136]    [Pg.240]   
See also in sourсe #XX -- [ Pg.494 ]




SEARCH



Cyclization Palladium

Cyclization catalytic

Cyclization oxidative

Oxidation palladium

Oxidation using

Oxidative cyclizations

Palladium cyclizations

Palladium oxide

Palladium oxidized

© 2024 chempedia.info