Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidative addition catalytic pathways

Periana et al. have reported a mercury system that catalyzes the partial oxidation of methane to methanol.81 Hg(II) is typically considered to be a soft electrophile and is known to initiate electrophilic substitution of protons from aromatic substrates. The catalytic reaction employs mercuric triflate in sulfuric acid, and a key step in the catalytic cycle is Hg(II)-mediated methane C—H activation. For methane C—H activation by Hg(II), an oxidative addition reaction pathway via the formation of Hg(IV) is unlikely. Thus, an electrophilic substitution pathway has been proposed, although differentiation between proton transfer to an uncoordinated anion versus intramolecular proton transfer to a coordinated anion (i.e., o-bond metathesis) has not been established. Hg(II)-based methane C H activation was confirmed by the observation of H/D exchange between CH4 and D2S04 (Equation 11.9). [Pg.530]

The proposed mechanism for Fe-catalyzed 1,4-hydroboration is shown in Scheme 28. The FeCl2 is initially reduced by magnesium and then the 1,3-diene coordinates to the iron center (I II). The oxidative addition of the B-D bond of pinacolborane-tfi to II yields the iron hydride complex III. This species III undergoes a migratory insertion of the coordinated 1,3-diene into either the Fe-B bond to produce 7i-allyl hydride complex IV or the Fe-D bond to produce 7i-allyl boryl complex V. The ti-c rearrangement takes place (IV VI, V VII). Subsequently, reductive elimination to give the C-D bond from VI or to give the C-B bond from VII yields the deuterated hydroboration product and reinstalls an intermediate II to complete the catalytic cycle. However, up to date it has not been possible to confirm which pathway is correct. [Pg.51]

Both Ni and Pd reactions are proposed to proceed via the general catalytic pathway shown in Scheme 8.1. Following the oxidative addition of a carbon-halogen bond to a coordinatively unsaturated zero valent metal centre (invariably formed in situ), displacement of the halide ligand by alkoxide and subsequent P-hydride elimination affords a Ni(II)/Pd(ll) aryl-hydride complex, which reductively eliminates the dehalogenated product and regenerates M(0)(NHC). ... [Pg.208]

It is postulated that the mechanism of the silane-mediated reaction involves silane oxidative addition to nickel(O) followed by diene hydrometallation to afford the nickel -jr-allyl complex A-16. Insertion of the appendant aldehyde provides the nickel alkoxide B-12, which upon oxygen-silicon reductive elimination affords the silyl protected product 71c along with nickel(O). Silane oxidative addition to nickel(O) closes the catalytic cycle. In contrast, the Bu 2Al(acac)-mediated reaction is believed to involve a pathway initiated by oxidative coupling of the diene and... [Pg.522]

Oxidative addition consumes one equivalent of expensive Pd(OAc)2 in most cases. However, progress has been made towards the catalytic oxidative addition pathway. Knolker s group described one of the first oxidative cyclizations using catalytic Pd(OAc)2 in the synthesis of indoles [19]. They reoxidized Pd(0) to Pd(II) with cupric acetate similar to the Wacker reaction, making the reaction catalytic with respect to palladium [20]. [Pg.3]

Miyaura and co-workers reported the platinum-catalyzed diboration of allenes with bis(pinacolato)diboron (Scheme 16.52) [57]. The catalytic cycle involves a sequence of oxidative addition of bis(pinacolato)diboron to Pt(0), insertion of an allene into the B-Pt bond and reductive elimination of an allylic boronate, re-producing the Pt(0) species. (Z)-Allylic boronates are formed stereoselectively in the reaction with monosubstituted allenes, which strongly suggests a pathway via a vinylplatinum species rather than a Jt-allylplatinum species. [Pg.946]

While the reductive elimination is a major pathway for the deactivation of catalytically active NHC complexes [127, 128], it can also be utilized for selective transformations. Cavell et al. [135] described an interesting combination of oxidative addition and reductive elimination for the preparation of C2-alkylated imida-zohum salts. The in situ generated nickel catalyst [Ni(PPh3)2] oxidatively added the C2-H bond of an imidazolium salt to form a Ni hydrido complex. This complex reacts under alkene insertion into the Ni-H bond followed by reductive elimination of the 2-alkylimidazolium salt 39 (Fig. 14). Treatment of N-alkenyl functionalized azolium salts with [NiL2] (L = carbene or phosphine) resulted in the formation of five- and six-membered ring-fused azolium (type 40) and thiazolium salts [136, 137]. [Pg.110]

For dinuclear Cu complexes, several pathways are possible as summarized in Scheme 15 [182]. In addition, plausible alternatives involve mixed-valent Cu Cu species where only one of the Cu ions is directly involved in the electron transfer. The latter seems most hkely in cases where the substrate binds to only one of the two copper ions, and H2O2 may then form upon oxidation of the Cu Cu -semiquinone intermediate [195]. Different coordination modes of the DTBC substrate appear to be indeed possible, depending on the particular dicopper scaffold [133,196,197]. Unfortunately, detailed mechanistic studies are still quite scarce [198-203] and most proposed catalytic pathways are rather speculative. [Pg.55]

Their most detailed investigations focused on the Heck cyclization of iodide 18.1c to form oxindole 17.3a (Scheme 8G.18) [38a,b]. A chiral-amplification study [47] established that the catalytically active species is a monomeric Pd-BINAP complex, a conclusion also corroborated by NMR studies by Amatore and co-workers [42d,43], In addition, two possibilities for the enantioselective step of the neutral pathway were easily eliminated [38a], Oxidative addition was precluded as the enantioselective step, because iodides cyclize with very different enantioselectivities in the presence of Ag(I) salts. A scenario where migratory insertion is reversible and [l-hydridc elimination is the enantioselective step was also ruled out, because this is not consistent with the dependence of enantioselectivity on the geometry of the double bond of the cyclization precursor. [Pg.694]

Several reaction pathways for reaction 1 are possible. A clear reaction mechanism has not been elucidated. Although it is premature to discuss the details of the reaction pathway for this silylation reaction, one possible pathway for the chelation-assisted silylation of C-H bonds is shown in Scheme 2. The catalytic reaction is initiated by oxidative addition of hydrosilane to A. Intermediate B reacts with an olefin to give C. Then, addition of a C-H bond to C leads to intermediate D. Dissociation of alkane from D provides Ru(silyl)(aryl) intermediate E. Reductive elimination making a C-Si bond gives the silylation product and the active catalyst species A is regenerated. Another pathway, addition of a C-H bond to A before addition of hydrosilane to A is also possible. At present, these two pathways cannot be distinguished. [Pg.133]


See other pages where Oxidative addition catalytic pathways is mentioned: [Pg.8]    [Pg.195]    [Pg.159]    [Pg.213]    [Pg.303]    [Pg.56]    [Pg.180]    [Pg.793]    [Pg.308]    [Pg.791]    [Pg.289]    [Pg.13]    [Pg.37]    [Pg.367]    [Pg.496]    [Pg.535]    [Pg.118]    [Pg.190]    [Pg.240]    [Pg.191]    [Pg.185]    [Pg.200]    [Pg.254]    [Pg.308]    [Pg.33]    [Pg.208]    [Pg.99]    [Pg.141]    [Pg.411]    [Pg.11]    [Pg.789]    [Pg.434]    [Pg.2042]    [Pg.71]    [Pg.167]    [Pg.253]    [Pg.18]    [Pg.184]    [Pg.335]    [Pg.561]   
See also in sourсe #XX -- [ Pg.185 ]




SEARCH



Catalytic additives

Oxidation pathways

Oxidative addition pathway

Oxidative pathways

© 2024 chempedia.info