Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic asymmetric cyanosilylation of ketones

We began our synthesis by finding the optimum reaction conditions for the catalytic asymmetric cyanosilylation of ketone 28 (Table 1). Based on previous studies,30 the titanium complex of a D-glucose derived ligand (catalyst 32 or 33) generally gives (/ )-ketone cyanohydrins, which is required for a synthesis of natural fostriecin. [Pg.355]

Tian SK, Hong R, Deng L (2003) Catalytic Asymmetric Cyanosilylation of Ketones with Chiral Lewis Base. J Am Chem Soc 125 9900... [Pg.163]

Our proposed transition state model for this catalytic enantioselective cyanosilylation of ketone is shown as 35.30a The titanium acts as a Lewis acid to activate the substrate ketone, while the phosphine oxide acts as a Lewis base to activate TMSCN. The intramolecular transfer of the activated cyanide to the activated ketone should give the ( )-cyanohydrin in high selectivity. The successful results described above clearly demonstrate the practicality of our asymmetric catalyst for cyanosilylation of ketones. [Pg.356]

Asymmetric cyanosilylation of ketones and aldehydes is important because the cyanohydrin product can be easily converted into optically active aminoalcohols by reduction. Moberg, Haswell and coworkers reported on a microflow version of the catalytic cyanosilylation of aldehydes using Pybox [5]/lanthanoid triflates as the catalyst for chiral induction. A T-shaped borosilicate microreactor with channel dimensions of 100 pm X 50 pm was used in this study [6]. Electroosmotic flow (EOF) was employed to pump an acetonitrile solution of phenyl-Pybox, LnCl3 and benzal-dehyde (reservoir A) and an acetonitrile solution of TMSCN (reservoir B). LuC13-catalyzed microflow reactions gave similar enantioselectivity to that observed in analogous batch reactions. However, lower enantioselectivity was observed for the YbCl3-catalyzed microflow reactions than that observed for the batch reaction (Scheme 4.5). It is possible that the oxophilic Yb binds to the silicon oxide surface of the channels. [Pg.61]

Inoue et al. reported that a complex prepared from AlMes and peptide Schiff base 166 is available for asymmetric cyanosilylation of aldehydes (Scheme 10.239) [630]. The enantioselectivity observed is not as high, even with a stoichiometric amount of the complex (up to 71% ee). A more recent study by Snapper and Hoveyda has, however, revealed that a similar catalyst system using Al(()t-Pr) ), and peptide Schiff base 167 is quite effective in catalytic asymmetric cyanosilylation of both aromatic and aliphatic ketones (66->98%, 80-95% ee wifh 10-20 mol% of fhe catalyst) [631]. [Pg.554]

Systematic investigations of the catalyst structure-enantioselectivity profile in the Mannich reaction [72] led to significantly simplified thiourea catalyst 76 lacking both the Schiff base unit and the chiral diaminocyclohexane backbone (figure 6.14 Scheme 6.88). Yet, catalyst 76 displayed comparable catalytic activity (99% conv.) and enantioselectivity (94% ee) to the Schiff base catalyst 48 in the asymmetric Mannich reaction of N-Boc-protected aldimines (Schemes 6.49 and 6.88) [245]. This confirmed the enantioinductive function of the amino acid-thiourea side chain unit, which also appeared responsible for high enantioselectivities obtained with catalysts 72, 73, and 74, respectively, in the cyanosilylation of ketones (Schemes 6.84 and 6.85) [240, 242]. [Pg.231]


See other pages where Catalytic asymmetric cyanosilylation of ketones is mentioned: [Pg.354]    [Pg.355]    [Pg.173]    [Pg.143]    [Pg.354]    [Pg.355]    [Pg.173]    [Pg.143]    [Pg.214]    [Pg.553]    [Pg.159]    [Pg.246]    [Pg.215]    [Pg.934]    [Pg.133]    [Pg.169]   
See also in sourсe #XX -- [ Pg.2 , Pg.175 ]

See also in sourсe #XX -- [ Pg.2 , Pg.175 ]




SEARCH



Asymmetric catalytic

Asymmetric cyanosilylation

Asymmetrical ketones

Cyanosilylation of Ketones

Ketones catalytic asymmetric

Ketones cyanosilylation

© 2024 chempedia.info