Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silica catalyst support

Amorphous silica is used as a pigment and filler in paints and coatings. It also is used as an abrasive, absorbent and catalyst support. Silica gel is a common desiccant and adsorbent. It is used in analytical chemistry as a packing material in chromatography columns and in clean-up of organic extracts to remove interference in trace analysis of organic pollutants. [Pg.826]

Catalysts and adsorbents Silica alumina solid acid catalysts, high surface area catalyst support, silica support desiooant... [Pg.475]

Figure 8.40 The k ySk) extended X-ray absorption fine structure (EXAFS) signal, Fourier transformed and then retransformed after application of the filter window indicated, in (a) osmium metal and (b) a 1% osmium catalyst supported on silica. (Reproduced, with permission, Ifom Winnick, FI. and Doniach, S. (Eds), Synchrotron Radiation Research, p. 413, Plenum, New York, 1980)... Figure 8.40 The k ySk) extended X-ray absorption fine structure (EXAFS) signal, Fourier transformed and then retransformed after application of the filter window indicated, in (a) osmium metal and (b) a 1% osmium catalyst supported on silica. (Reproduced, with permission, Ifom Winnick, FI. and Doniach, S. (Eds), Synchrotron Radiation Research, p. 413, Plenum, New York, 1980)...
A great many materials have been used as catalyst supports in hydrogena-tion, but most of these catalyst have been in a quest for an improved system. The majority of catalyst supports are some form of carbon, alumina, or silica-alumina. Supports such as calcium carbonate or barium sulfate may give better yields of B in reactions of the type A- B- C, exemplified by acetylenes- cjs-olefins, apparently owing to a weaker adsorption of the intermediate B. Large-pore supports that allow ready escape of B may give better selectivities than smaller-pore supports, but other factors may influence selectivity as well. [Pg.4]

Oxazoborolidinone 8 is an example of catalyst supported on silica gel. It is prepared by immobilizing the N-tosyl-0-allyl-(S)-tyrosine with mercaptopropyl silica and treatment with BF3 and has been used to catalyze the Diels-Alder reaction of methacrolein with cyclopentadiene [17] (Equation 4.2). The cycloaddition occurs with good diastereoselectivity but with low enantioselec-tivity. [Pg.147]

A ceramic monolith catalyst support, cordierite, consisting of silica, alumina and magnesium oxide. The purpose of this is to provide support, strength and stability over a wide temperature range. [Pg.107]

Mesoporous carbon materials were prepared using ordered silica templates. The Pt catalysts supported on mesoporous carbons were prepared by an impregnation method for use in the methanol electro-oxidation. The Pt/MC catalysts retained highly dispersed Pt particles on the supports. In the methanol electro-oxidation, the Pt/MC catalysts exhibited better catalytic performance than the Pt/Vulcan catalyst. The enhanced catalytic performance of Pt/MC catalysts resulted from large active metal surface areas. The catalytic performance was in the following order Pt/CMK-1 > Pt/CMK-3 > Pt/Vulcan. It was also revealed that CMK-1 with 3-dimensional pore structure was more favorable for metal dispersion than CMK-3 with 2-dimensional pore arrangement. It is eoncluded that the metal dispersion was a critical factor determining the catalytic performance in the methanol electro-oxidation. [Pg.612]

In ecent years the utility of extended X-ray absorption fine structure UXAFS) as a probe for the study of catalysts has been clearly demonstrated (1-17). Measurements of EXAFS are particularly valuable for very highly dispersed catalysts. Supported metal systems, in which small metal clusters or crystallites are commonly dispersed on a refractory oxide such as alumina or silica, are good examples of such catalysts. The ratio of surface atoms to total atoms in the metal clusters is generally high and may even approach unity in some cases. [Pg.253]

Determination of Metal Precursor Mobilities During Pretreatment. Relative precursor mobilities were obtained by premixing the sllica-or alumina-supported metal catalysts with pure silica (Cab-O-Sll, grade M-5, Cabot Corp.) or pure alumina (Alon C, Cabot Corp.) In a 1 2 ratio prior to pretreatment. The catalyst and silica were ground together using a mortar and pestle for at least 0.5 hr. before they were placed in the Pyrex microreactor for pretreatment. [Pg.296]

Zeolites have ordered micropores smaller than 2nm in diameter and are widely used as catalysts and supports in many practical reactions. Some zeolites have solid acidity and show shape-selectivity, which gives crucial effects in the processes of oil refining and petrochemistry. Metal nanoclusters and complexes can be synthesized in zeolites by the ship-in-a-bottle technique (Figure 1) [1,2], and the composite materials have also been applied to catalytic reactions. However, the decline of catalytic activity was often observed due to the diffusion-limitation of substrates or products in the micropores of zeolites. To overcome this drawback, newly developed mesoporous silicas such as FSM-16 [3,4], MCM-41 [5], and SBA-15 [6] have been used as catalyst supports, because they have large pores (2-10 nm) and high surface area (500-1000 m g ) [7,8]. The internal surface of the channels accounts for more than 90% of the surface area of mesoporous silicas. With the help of the new incredible materials, template synthesis of metal nanoclusters inside mesoporous channels is achieved and the nanoclusters give stupendous performances in various applications [9]. In this chapter, nanoclusters include nanoparticles and nanowires, and we focus on the synthesis and catalytic application of noble-metal nanoclusters in mesoporous silicas. [Pg.383]

Fe/Ir catalysts on silica and alumina Fe and Ir Mossbauer spectroscopy silica- and alumina-supported Fe-Ir catalysts formed by calcination in air contain mixtures of small particles of Fe(III) oxide and Ir(IV) oxide. IrOz is reduced in hydrogen to metallic Ir. a-Fe203 on SiOz is reduced in hydrogen to an Fe-Ir alloy, whilst supported on alumina stabilizes in hydrogen as Fe(II). Possible use for methanol formation is discussed... [Pg.333]

Isolated Organometallic Catalysts on Silica Supports - Towards Single-Site Solid Catalysts... [Pg.267]

The above example outlines a general problem in immobilized molecular catalysts - multiple types of sites are often produced. To this end, we are developing techniques to prepare well-defined immobilized organometallic catalysts on silica supports with isolated catalytic sites (7). Our new strategy is demonstrated by creation of isolated titanium complexes on a mesoporous silica support. These new materials are characterized in detail and their catalytic properties in test reactions (polymerization of ethylene) indicate improved catalytic performance over supported catalysts prepared via conventional means (8). The generality of this catalyst design approach is discussed and additional immobilized metal complex catalysts are considered. [Pg.268]

If we compare these productivities with those obtained under catalytic hydrogenation conditions (Table 2, Figure 3), we can see that the trend is different Cu/MgO shows very low activity, particularly if compared with that of the catalyst supported on silica and modified silicas. [Pg.296]


See other pages where Silica catalyst support is mentioned: [Pg.100]    [Pg.244]    [Pg.625]    [Pg.100]    [Pg.244]    [Pg.625]    [Pg.104]    [Pg.193]    [Pg.83]    [Pg.538]    [Pg.191]    [Pg.338]    [Pg.609]    [Pg.609]    [Pg.178]    [Pg.189]    [Pg.97]    [Pg.218]    [Pg.388]    [Pg.389]    [Pg.391]    [Pg.333]    [Pg.124]    [Pg.197]    [Pg.536]    [Pg.665]    [Pg.116]    [Pg.87]    [Pg.43]    [Pg.75]    [Pg.200]    [Pg.201]    [Pg.74]    [Pg.115]    [Pg.124]    [Pg.464]    [Pg.65]    [Pg.143]   
See also in sourсe #XX -- [ Pg.66 , Pg.120 , Pg.160 , Pg.231 , Pg.250 , Pg.251 , Pg.261 , Pg.265 , Pg.266 , Pg.267 , Pg.268 , Pg.269 , Pg.270 , Pg.271 , Pg.272 , Pg.273 , Pg.279 ]

See also in sourсe #XX -- [ Pg.66 , Pg.120 , Pg.160 , Pg.231 , Pg.250 , Pg.251 , Pg.261 , Pg.265 , Pg.266 , Pg.267 , Pg.268 , Pg.269 , Pg.270 , Pg.271 , Pg.272 , Pg.273 , Pg.279 ]




SEARCH



Alloy catalysts silica-supported

Catalysis silica-supported catalysts

Catalyst supports modified silica

Catalyst-support interactions silica supported metals

Chromium/silica catalyst support properties

Heterogeneous silica-supported catalysts

Molybdenum catalysts, silica-supported

Nickel catalyst, silica-supported

Nitric oxide calcination, silica-supported cobalt catalysts

Oxide-based catalysts silica-supported

Ruthenium catalysts, silica-supported

Silica gel catalyst support

Silica support

Silica supported Ni catalyst

Silica-supported Ru catalysts

Silica-supported catalyst

Silica-supported catalyst

Silica-supported cobalt catalysts, nitric oxide

Silica-supported metallocene/MAO catalysts

Stable silica-based ceramic oxide supports for catalysts some recent developments

Suzuki silica-supported catalyst

© 2024 chempedia.info