Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst supports montmorillonite

Because the size of the interlayers can be easily varied by incorporation of complex moieties of different sizes, these clays (montmorillonite, hectorite) may nevertheless compete as catalyst supports with zeolites which have a rigid, predetermined cavity size. [Pg.447]

The dispersion and solid-state ion exchange of ZnCl2 on to the surface of NaY zeolite by use of microwave irradiation [17] and modification of the surface of active carbon as catalyst support by means of microwave induced treatment have also been reported [18]. The ion-exchange reactions of both cationic (montmorillonites) and anionic clays (layered double hydroxides) were greatly accelerated under conditions of microwave heating compared with other techniques currently available [19.]... [Pg.349]

Over the past 15-20 years, there has been a renewed and growing interest in the use of clay minerals as catalysts or catalyst supports. Most of this interest has focused on the pillaring of smectite clays, such as montmorillonite, with various types of cations, such as hydrated metal cations, alkylammonium cations and polycations, and polynuclear hydroxy metal cations (1-17). By changing the size of the cation used to separate the anionic sheets in the clay structure, molecular sieve-like materials can be made with pore sizes much larger than those of conventional zeolites. [Pg.140]

The catalyst system for the modem methyl acetate carbonylation process involves rhodium chloride trihydrate [13569-65-8]y methyl iodide [74-88-4], chromium metal powder, and an alumina support or a nickel carbonyl complex with triphenylphosphine, methyl iodide, and chromium hexacarbonyl (34). The use of nitrogen-heterocyclic complexes and rhodium chloride is disclosed in one European patent (35). In another, the alumina catalyst support is treated with an organosilicon compound having either a terminal organophosphine or similar ligands and rhodium or a similar noble metal (36). Such a catalyst enabled methyl acetate carbonylation at 200°C under about 20 MPa (2900 psi) carbon monoxide, with a space-time yield of 140 g anhydride per g rhodium per hour. Conversion was 42.8% with 97.5% selectivity. A homogeneous catalyst system for methyl acetate carbonylation has also been disclosed (37). A description of another synthesis is given where anhydride conversion is about 30%, with 95% selectivity. The reaction occurs at 445 K under 11 MPa partial pressure of carbon monoxide (37). A process based on a montmorillonite support with nickel chloride coordinated with imidazole has been developed (38). Other related processes for carbonylation to yield anhydride are also available (39,40). [Pg.77]

We report here the hydrogenation of cycloalkenes using Rh-supported montmorillonite as a catalyst. The catalyst preparation was based on oxidative degradation of intercalated tris-(phenanthroline)-Rh(III) followed by reduction under hydrogen atmosphere. There is no obvious trend observed in the hydrogenation yields of the olefins. The most notable difference in the hydrogenation behaviour is seen in case of cyclopentene/cyclooctene both olefins could be efficiently hydrogenated in their pure form but there was no conversion of cyclooctene in presence of cyclopentene. [Pg.767]

The first report of bimodal PE from any supported metallocene involved a clay-supported catalyst. Sodium montmorillonite (Kunipia-F) was dried at 500°C, then... [Pg.148]

The same group reported that supporting XX on sodium montmorillonite that had been treated with AlMej-depleted MAO gave an activity of 178 kg PE/(g-Ti-h) at 70°C and 10 bar. 3 The apparent enhancement of the activity even beyond that of the homogeneous catalyst was attributed to reduced reactor fouling. The same catalyst supported on lithium hectorite or kaolin was less active. The importance of pre-drying the clay, and of... [Pg.155]

In mineralogy, the term clay is used for a variety of polycrystaUine materials that are well described in clay science, mineralogy properties, and characterization textbooks [2-5]. Clays can be present in fibrous, tubular, lath shaped, and planar geometries. In this chapter, however, our focus will be mainly on the planar clay varieties called smectites that include montmorillonites, the most commonly used clay for the produchon of polyolefin-clay nanocomposites. In this section, we wiU focus on clay characteristics that are relevant to catalyst supporting and particle break-up during polymerization clay chemistry, crystalline structure, and geometry. [Pg.54]

Polymer-supported tetrabromooxomolybdate(V) was claimed to be a heterogeneous catalyst for alcohol oxidations with TBHP . However, it seems likely that molybdenum is leached from the surface and the observed catalysis may be, at least partially, homogeneous in nature. The same applies to Cr(III) and Ce(IV) catalysts supported on a perfluorinated sulfonic acid resin (Nafion K) which catalyze the oxidation of alcohols with TBHP . Similarly, vanadium-pillared montmorillonite clay (V-PILC) ° and a zeolite-encapsulated vanadium picolinate complex were shown to catalyze... [Pg.150]

Shin S-YA, Simon LC, Soares JBP, Scholz G, McKenna TFL (2009) Gas-phase polymerization with transition metal catalysts supported on montmorillonite - a particle morphological study. Macromol Symp 285(1) 64—73... [Pg.338]

Choudhary etal. reported that their InCla catalyst supported on montmorillonite-KIO [143] or Si-MCM-41 [144] for the acetylation of t-butanol using acetic anhydride was also met with high conversion to the ester, with minimal amounts of isobutylene observed. Salavati-Niasari et al. also reported similar results with InCla supported... [Pg.414]

In this chapter, we demonstrate the potential of such agents as catalysts/promoters in key steps for the derivatization of sugars. The most significant catalytic approaches in carbohydrate chemistry that use aluminosilicate porous materials, namely zeolites and montmorillonite clays, are reviewed and discussed. Silica gel is a porous solid silicate that has also been used for heterogeneous catalysis of organic reactions in general. We include here its usefulness as promoter and reagent support for the reactions under consideration. [Pg.30]

Glycals can be transformed into 1,6-anhydro sugar derivatives by intramolecular cyclization in the presence of Lewis and Brpnsted acids, a reaction that has been termed the intramolecular Ferrier glycosylation.168 Sharma el al.169 showed that a montmorillonite clay-supported silver reagent can be an efficient catalyst for this transformation. The 1,6-anhydro-2,3-dehydro sugars obtained were then selectively dihydroxylated to furnish 1,6-anhydro saccharides. [Pg.79]

Alumina, silica, clays, and zeolites are increasingly used as acidic or basic supports [26], Cycloaddition reactions often require Lewis-acid catalysts if good yields are to be obtained. Clay and doped silica gel catalysts have emerged as useful alternatives to the use of Lewis acids. Cycloaddition offuran (5) under solvent-free conditions, catalyzed by K10 montmorillonite, results in a decrease in the reaction time the endo-exo relationship is no different that obtained by use of classical heating (Scheme 9.2) [27]. [Pg.298]

Bis(oxazoline)-copper complexes supported on clays were investigated as heterogeneous catalysts in the cyclopropanation reaction (37, 38). Optimal results were obtained from chloride-derived complexes in nitroethane as reaction medium. Laponite clay was found to provide higher selectivities than montmorillonite or bentonite. In every case, the heterogeneous reaction afforded increased amounts of the cis cyclopropane relative to the homogeneous reaction. [Pg.23]

The use of heterogeneous catalysts in this reaction has also been achieved palladium-montmorillonite clays [93] or palladium/activated carbon [94] in the presence of dppb transformed 2-allylphenols into lactones, the regiose-lectivity of the reaction being largely dependant on the nature of the support. Very recently, palladium complexes immobilized onto silica-supported (polyaminoamido)dendrimers were used as catalysts in the presence of dppb for the cyclocarbonylation of 2-allylphenols, 2-allylanilines, 2-vinylphenols, and 2-vinylanilines affording five-, six-, or seven-membered lactones and lactams. Good conversions are realized and the catalyst can be recycled 3-5 times [95]. [Pg.117]


See other pages where Catalyst supports montmorillonite is mentioned: [Pg.77]    [Pg.115]    [Pg.542]    [Pg.568]    [Pg.805]    [Pg.568]    [Pg.77]    [Pg.499]    [Pg.18]    [Pg.485]    [Pg.686]    [Pg.439]    [Pg.148]    [Pg.166]    [Pg.166]    [Pg.185]    [Pg.65]    [Pg.80]    [Pg.235]    [Pg.285]    [Pg.439]    [Pg.752]    [Pg.323]    [Pg.390]    [Pg.686]    [Pg.405]    [Pg.223]    [Pg.353]    [Pg.3]    [Pg.43]    [Pg.561]   
See also in sourсe #XX -- [ Pg.258 ]

See also in sourсe #XX -- [ Pg.258 ]




SEARCH



Montmorillonite catalyst

© 2024 chempedia.info