Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysis noncompetitive inhibition

This article describes various approaches to inhibition of enzyme catalysis. Reversible inhibition includes competitive, uncompetitive, mixed inhibition, noncompetitive inhibition, transition state, and slow tight-binding inhibition. Irreversible inhibition approaches include affinity labeling and mechanism-based enzyme inhibition. The kinetics of the various inhibition approaches are summarized, and examples of each type of Inhibition are presented. [Pg.436]

How can we determine whether a reversible inhibitor acts by competitive or noncompetitive inhibition Let us consider only enzymes that exhibit Michaelis- Menten kinetics. Measurements of the rates of catalysis at different concentrations of substrate and inhibitor serve to distinguish the three types of inhibition. In competitive inhibition, the inhibitor competes with the substrate for the active site. The dissociation constant for the inhibitor is given by... [Pg.226]

Unlike other enzymes that we have discussed, the completion of a catalytic cycle of primer extension does not result in release of the product (TP(n+1)) and recovery of the free enzyme. Instead, the product remains bound to the enzyme, in the form of a new template-primer complex, and this acts as a new substrate for continued primer extension. Catalysis continues in this way until the entire template sequence has been complemented. The overall rate of reaction is limited by the chemical steps composing cat these include the chemical step of phosphodiester bond formation and requisite conformational changes in the enzyme structure. Hence there are several potential mechanisms for inhibiting the reaction of HIV RT. Competitive inhibitors could be prepared that would block binding of either the dNTPs or the TP. Alternatively, noncompetitive compounds could be prepared that function to block the chemistry of bond formation, that block the required enzyme conformational transition(s) of turnover, or that alter the reaction pathway in a manner that alters the rate-limiting step of turnover. [Pg.61]

In this chapter we described the thermodynamics of enzyme-inhibitor interactions and defined three potential modes of reversible binding of inhibitors to enzyme molecules. Competitive inhibitors bind to the free enzyme form in direct competition with substrate molecules. Noncompetitive inhibitors bind to both the free enzyme and to the ES complex or subsequent enzyme forms that are populated during catalysis. Uncompetitive inhibitors bind exclusively to the ES complex or to subsequent enzyme forms. We saw that one can distinguish among these inhibition modes by their effects on the apparent values of the steady state kinetic parameters Umax, Km, and VmdX/KM. We further saw that for bisubstrate reactions, the inhibition modality depends on the reaction mechanism used by the enzyme. Finally, we described how one may use the dissociation constant for inhibition (Kh o.K or both) to best evaluate the relative affinity of different inhibitors for ones target enzyme, and thus drive compound optimization through medicinal chemistry efforts. [Pg.80]

Mechanisms of CYP inhibition can be broadly divided into two categories reversible inhibition and mechanism-based inactivation. Depending on the mode of interaction between CYP enzymes and inhibitors, reversible CYP inhibition is further characterized as competitive, noncompetitive, uncompetitive, and mixed (Ito et al., 1998b). Evaluation of reversible inhibition of CYP reactions is often conducted under conditions where M-M kinetics is obeyed. Based on the scheme illustrated in Fig. 5.1, various types of reversible inhibition are summarized in Table 5.1. Figure 5.1 depicts a simple substrate-enzyme complex during catalysis. In the presence of a reversible inhibitor, such a complex can be disrupted leading to enzyme inhibition. [Pg.114]

The structure of a noncompetitive inhibitor does not resemble the substrate and does not compete for the active site. Instead, a noncompetitive inhibitor binds to a site on the enzyme that is not the active site. When the noncompetitive inhibitor is bonded to the enzyme, the shape of the enzyme is distorted. Inhibition occnrs becanse the substrate cannot fit in the active site or it does not fit properly. Without the proper alignment of substrate with the amino acid side groups, no catalysis can take place (see Figure 16.18). [Pg.578]


See other pages where Catalysis noncompetitive inhibition is mentioned: [Pg.583]    [Pg.263]    [Pg.28]    [Pg.71]    [Pg.436]    [Pg.1076]    [Pg.260]    [Pg.337]    [Pg.327]    [Pg.127]    [Pg.150]   
See also in sourсe #XX -- [ Pg.147 , Pg.161 ]




SEARCH



Noncompetitive inhibition

© 2024 chempedia.info