Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysis formic acid

The intervention of mesoionic intermediates is suggested by the facile transformation of steroidal dienones, and by a number of acid-catalyzed nonphotolytic reactions which either parallel the photoisomerizations or correlate photoproducts from reactions in protic and aprotic solvents. The isomerization (175) -> (176) -l- (177) has also beeen achieved in the dark by acetic and formic acid catalysis and clearly involves the conjugate acid of the proposed mesoionic intermediate (199) in the dark reaction. Further,... [Pg.332]

Catalysis by Formic Acid (9). A mixture of 65 g (0.5 mole) of l-ethynylcyclohexanol and 400 ml of formic acid (90%) is gently heated under reflux until a vigorous reaction ensues. After heating under reflux for 45 minutes the mixture is poured into 2 liters of... [Pg.129]

This ease with which we can control and vary the concentrations of H+(aq) and OH (aq) would be only a curiosity but for one fact. The ions H+(aq) and OH (aq) take part in many important reactions that occur in aqueous solution. Thus, if H+(aq) is a reactant or a product in a reaction, the variation of the concentration of hydrogen ion by a factor of 1012 can have an enormous effect. At equilibrium such a change causes reaction to occur, altering the concentrations of all of the other reactants and products until the equilibrium law relation again equals the equilibrium constant. Furthermore, there are many reactions for which either the hydrogen ion or the hydroxide ion is a catalyst. An example was discussed in Chapter 8, the catalysis of the decomposition of formic acid by sulfuric acid. Formic acid is reasonably stable until the hydrogen ion concentration is raised, then the rate of the decomposition reaction becomes very rapid. [Pg.182]

The scope of this reaction is similar to that of 10-21. Though anhydrides are somewhat less reactive than acyl halides, they are often used to prepare carboxylic esters. Acids, Lewis acids, and bases are often used as catalysts—most often, pyridine. Catalysis by pyridine is of the nucleophilic type (see 10-9). 4-(A,A-Dimethylamino)pyridine is a better catalyst than pyridine and can be used in cases where pyridine fails. " Nonbasic catalysts are cobalt(II) chloride " and TaCls—Si02. " Formic anhydride is not a stable compound but esters of formic acid can be prepared by treating alcohols " or phenols " with acetic-formic anhydride. Cyclic anhydrides give monoesterified dicarboxylic acids, for example,... [Pg.483]

Owing to its excellent thermal and mechanical stability and its rich chemistry, alumina is the most widely used support in catalysis. Although aluminium oxide exists in various structures, only three phases are of interest, namely the nonporous, crys-tallographically ordered a-Al203, and the porous amorphous t]- and y-Al203. The latter is also used as a catalyst by itself, for example in the production of elemental sulfur from H2S (the Claus process), the alkylation of phenol or the dehydration of formic acid. [Pg.192]

Acidification with trichloracetic acid catalyses oxidation , the fractional increase in the rate coefficient per mole of acid added, viz. Ak/ko)/[sicid], being of the order of two. Strong catalysis by alkali metal acetates has been observed for several oxidations, e.g. of m-cyclohexane-l,2-diol °, formic acid , methyl mannoside and galactoside and several a-hydroxycarboxylic acids °. [Pg.349]

Within the general mechanism for the oxidation of Ci molecules, proposed by Bagotzsky, formic acid is one of the simplest cases, since it requires only the transfer of two electrons for the complete oxidation to CO2 [Bagotzky et al., 1977]. In fact, it has the same oxidation valency as CO both require two electrons for complete oxidation to CO2. When compared with CO, the reaction mechanism of formic acid is more complex although the catalysis of the oxidation reaction is much easier. In fact, formic acid can be readily oxidized at potentials as low as 0.2 V (vs. RHE). Its reaction mechanism takes place according to the well-established dual path mechanism [Capon and Parsons, 1973a, b] ... [Pg.177]

HMF is an important versatile sugar derivative and is a key intermediate between bio-based carbohydrate chemistry and petroleum based industrial organic chemistry (1, 2). The most coimnon feedstock for HMF is fructose and reactions are carried out in water-based solvent systems using acid catalysis (3,4). HMF is unstable in water at low pH and breaks down to form levulinic acid and formic acid, resulting in an expensive HMF recovery process. In strongly polar organic co-solvents, such as dimethylsulfoxide (DMSO), levuhnic acid formation is reduced and HMF yields are improved (5). [Pg.411]

A number of products in which one of the naphthalene rings has been reduced have interesting pharmacological properties. Reaction of tetralone 30 with dimethylamine under TiCl catalysis produces the corresponding enamine (31). Reaction with formic acid at room temperature effects reduction of the... [Pg.213]

An interesting result which questions the necessity of metal ions for catalysis of C02 reduction was reported 99 at a polyaniline-coated p-Si electrode, C02 was effectively reduced to formic acid... [Pg.351]

The range of reactions which have been examined is wide (248) and includes hydrogenations (256), ammonia synthesis (257), polymerizations (257), and oxidations (258). Little activity has occurred in this area during the past few years. Recent reports of the effects of sonication on heterogeneous catalysis include the liquefaction of coal by hydrogenation with Cu/Zn (259), the hydrogenation of olefins by formic acid with Pd on carbon (260), and the hydrosilation of 1-alkenes by Pt on carbon (261). [Pg.111]

Catalysis and Synthesis in the Laboratory. Research on the practical applications of catalysis was not matched in the laboratory. We began a study of metal and non-metal catalyzed reactions early in our sonochemistry program. Our first project was to develop a convenient method of hydrogenating a wide range of olefins. We chose formic acid as our hydrogen source and found it to be effective. For example, with continuous irradiation, palladium catalyzed hydrogenations of olefins are complete in one hour(44). [Pg.220]

Gold forms a continuous series of solid solutions with palladium, and there is no evidence for the existence of a miscibility gap. Also, the catalytic properties of the component metals are very different, and for these reasons the Pd-Au alloys have been popular in studies of the electronic factor in catalysis. The well-known paper by Couper and Eley (127) remains the most clearly defined example of a correlation between catalytic activity and the filling of d-band vacancies. The apparent activation energy for the ortho-parahydrogen conversion over Pd-Au wires wras constant on Pd and the Pd-rich alloys, but increased abruptly at 60% Au, at which composition d-band vacancies were considered to be just filled. Subsequently, Eley, with various collaborators, has studied a number of other reactions over the same alloy wires, e.g., formic acid decomposition 128), CO oxidation 129), and N20 decomposition ISO). These results, and the extent to which they support the d-band theory, have been reviewed by Eley (1). We shall confine our attention here to the chemisorption of oxygen and the decomposition of formic acid, winch have been studied on Pd-Au alloy films. [Pg.158]

The points for Ag and Pd-Ag alloys lie on the same straight line, a compensation effect, but the pure Pd point lies above the Pd-Ag line. In fact, the point for pure Pd lies on the line for Pd-Rh alloys, whereas the other pure metal in this series, i.e., rhodium is anomalous, falling well below the Pd-Rh line. Examination of the many compensation effect plots given in Bond s Catalysis by Metals (155) shows that often one or other of the pure metals in a series of catalysts consisting of two metals and their alloys falls off the plot. Examples include CO oxidation and formic acid decomposition over Pd-Au catalysts, parahydrogen conversion (Pt-Cu) and the hydrogenation of acetylene (Cu-Ni, Co-Ni), ethylene (Pt-Cu), and benzene (Cu-Ni). In some cases, where alloy catalysts containing only a small addition of the second component have been studied, then such catalysts are also found to be anomalous, like the pure metal which they approximate in composition. [Pg.174]

Multiple products are possible from C02 hydrogenation, but all of the products are entropically disfavored compared to C02 and H2 (Scheme 17.1). As a result, the reactions must be driven by enthalpy, which explains why formic acid is usually prepared in the presence of a base or another reagent with which formic acid has an exothermic reaction. Of the many reduction products that are theoretically possible, including formic acid, formates, formamides, oxalic acid, methanol, CO, and methane, only formic acid and its derivatives are readily prepared by homogeneous catalysis. [Pg.490]

P. G. Jessop, Y. Hsiao, T. Ikariya, R. Noyori, Homogeneous Catalysis in Supercritical Fluids Hydrogenation of Supercritical Carbon Dioxide to Formic Acid, Alkyl Formates, and Formamides ,J. Am Chem Soc 1996,118, 344-355. [Pg.25]

The effects of a-CD on the bromination of other substrates have been studied recently (Javed, 1990 Tee et al., 1990a Tee and Javed, 1993), the object being to see if the catalytic effects observed earlier with phenols (Tee and Bennett, 1988a) are peculiar to these substrates or more general. Broadly speaking, various aromatic and heteroaromatic substrates (Table A4.4) showed behaviour (k /k2u = 1.7 to 10 XTS = 0.2 to 1.2 mM) very similar to that of phenols, and so the catalytic effect appears to be fairly general. The oxidation of formic acid by bromine also shows catalysis by a-CD (Han et al., 1989 Tee et al., 1990a). [Pg.21]

Interest in studying formic acid adsorption on metals by XPS and UPS was stimulated largely by its use as a probe molecule for investigating the role of the electronic factor in heterogeneous catalysis as in the work of Schwab (70), Dowden and Reynolds (71), Eley and Leutic (72), and Fahren-fort et al. (73). The advantages of XPS and UPS are fourfold. [Pg.82]

The ratio of rate constants for intramolecular general acid catalysis of the hydrolysis of [73] and intermolecular formic acid-catalysed hydrolysis of 2-phenoxytetrahydropyran is 580 M, a minimum value since the intramolecular reaction was studied at 15° while the bimolecuUir rates were measured at 50°. The ratio would be much larger if comparisons could be made at the same temperature... [Pg.94]

In catalysis, adsorbed CO may retard some reactions such as olefin hydrogenation, fuel cell conversion, and enantioselective hydrogenation. For instance, Lercher and coworkers observed the deactivation of Pt/Si02 in the liquid-phase hydrogenation of crotonaldehyde, and ascribed this deactivation to the decomposition of crotonaldehyde on platinum surface to adsorbed CO [138]. Blaser and coworkers found that the addition of a small amount of formic acid decreases the rate of liquid-phase hydrogenation of ethyl pyruvate on cinchonidine-modified Pt/Al203 catalyst, which they explained as the decomposition of formic acid on the catalyst to adsorbed CO. Interestingly, the addition of acetic acid does not decrease the reaction rate, but whether acetic acid decomposes on the catalyst as formic acid does was not mentioned [139]. [Pg.251]

However, perhaps the simplest route to quinazoline derivatives involves the heating of 2-aminobenzamides with formic acid to give 4(3//)-quinazolinones, where the formic acid provides the solvent, the C-2 synthon, and the acid catalysis of the ring-closure step. For example, in the synthesis of the imidazoquinazolinone 798, both the imidazo and pyrimidine rings were formed simply by heating the triamino amide 797 in formic acid for 2h <1996JME918>. [Pg.210]


See other pages where Catalysis formic acid is mentioned: [Pg.212]    [Pg.250]    [Pg.253]    [Pg.28]    [Pg.30]    [Pg.445]    [Pg.124]    [Pg.228]    [Pg.230]    [Pg.116]    [Pg.19]    [Pg.122]    [Pg.172]    [Pg.176]    [Pg.179]    [Pg.74]    [Pg.103]    [Pg.119]    [Pg.765]    [Pg.49]    [Pg.347]    [Pg.87]    [Pg.85]    [Pg.95]    [Pg.251]    [Pg.253]    [Pg.189]   
See also in sourсe #XX -- [ Pg.70 ]

See also in sourсe #XX -- [ Pg.70 ]

See also in sourсe #XX -- [ Pg.70 ]




SEARCH



© 2024 chempedia.info