Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carriers impurity

Very finely divided minerals may be difficult to purify by flotation since the particles may a ere to larger, undesired minerals—or vice versa, the fines may be an impurity to be removed. The latter is the case with Ii02 (anatase) impurity in kaolin clay [87]. In carrier flotation, a coarser, separable mineral is added that will selectively pick up the fines [88,89]. The added mineral may be in the form of a floe (ferric hydroxide), and the process is called adsorbing colloid flotation [90]. The fines may be aggregated to reduce their loss, as in the addition of oil to agglomerate coal fines [91]. [Pg.477]

In n type semiconductors, electrons are tire majority carriers. Holes will also be present tlirough accidental incoriioration of acceptor impurities or, more importantly, tlirough tlie intentional creation of electron-hole pairs. Holes in n type and electrons in p type semiconductors are minority carriers. [Pg.2883]

There are many ways of increasing tlie equilibrium carrier population of a semiconductor. Most often tliis is done by generating electron-hole pairs as, for instance, in tlie process of absorjition of a photon witli h E. Under reasonable levels of illumination and doping, tlie generation of electron-hole pairs affects primarily the minority carrier density. However, tlie excess population of minority carriers is not stable it gradually disappears tlirough a variety of recombination processes in which an electron in tlie CB fills a hole in a VB. The excess energy E is released as a photon or phonons. The foniier case corresponds to a radiative recombination process, tlie latter to a non-radiative one. The radiative processes only rarely involve direct recombination across tlie gap. Usually, tliis type of process is assisted by shallow defects (impurities). Non-radiative recombination involves a defect-related deep level at which a carrier is trapped first, and a second transition is needed to complete tlie process. [Pg.2883]

Intrinsic defects (or native or simply defects ) are imperfections in tire crystal itself, such as a vacancy (a missing host atom), a self-interstitial (an extra host atom in an otherwise perfect crystalline environment), an anti-site defect (in an AB compound, tliis means an atom of type A at a B site or vice versa) or any combination of such defects. Extrinsic defects (or impurities) are atoms different from host atoms, trapped in tire crystal. Some impurities are intentionally introduced because tliey provide charge carriers, reduce tlieir lifetime, prevent tire propagation of dislocations or are otlierwise needed or useful, but most impurities and defects are not desired and must be eliminated or at least controlled. [Pg.2884]

If tlie level(s) associated witli tlie defect are deep, tliey become electron-hole recombination centres. The result is a (sometimes dramatic) reduction in carrier lifetimes. Such an effect is often associated witli tlie presence of transition metal impurities or certain extended defects in tlie material. For example, substitutional Au is used to make fast switches in Si. Many point defects have deep levels in tlie gap, such as vacancies or transition metals. In addition, complexes, precipitates and extended defects are often associated witli recombination centres. The presence of grain boundaries, dislocation tangles and metallic precipitates in poly-Si photovoltaic devices are major factors which reduce tlieir efficiency. [Pg.2887]

The impurity atoms used to form the p—n junction form well-defined energy levels within the band gap. These levels are shallow in the sense that the donor levels He close to the conduction band (Fig. lb) and the acceptor levels are close to the valence band (Fig. Ic). The thermal energy at room temperature is large enough for most of the dopant atoms contributing to the impurity levels to become ionized. Thus, in the -type region, some electrons in the valence band have sufficient thermal energy to be excited into the acceptor level and leave mobile holes in the valence band. Similar excitation occurs for electrons from the donor to conduction bands of the n-ty e material. The electrons in the conduction band of the n-ty e semiconductor and the holes in the valence band of the -type semiconductor are called majority carriers. Likewise, holes in the -type, and electrons in the -type semiconductor are called minority carriers. [Pg.126]

Fig. 15. Excess carrier concentration in HgCdTe in a saturated Hg vapor as a function of temperature where the dashed line represents Hg vacancies. The extrinsic impurity concentration can be adjusted in the growth process from low 10 up to mid-10. Low temperature annealing reduces Hg vacancy... Fig. 15. Excess carrier concentration in HgCdTe in a saturated Hg vapor as a function of temperature where the dashed line represents Hg vacancies. The extrinsic impurity concentration can be adjusted in the growth process from low 10 up to mid-10. Low temperature annealing reduces Hg vacancy...
The responsivity and g-r noise may be analyzed to obtain background photon flux and temperature dependence of responsivity, noise, and detectivity. Typically, n > p, and both ate determined by shallow impurity levels. The minority carrier density is the sum of thermal and optical contributions. [Pg.434]

The extent of purification depends on the use requirements. Generally, either intense aqueous extractive distillation, or post-treatment by fixed-bed absorption (qv) using activated carbon, molecular sieves (qv), and certain metals on carriers, is employed to improve odor and to remove minor impurities. Essence grade is produced by final distillation in nonferrous, eg, copper, equipment (66). [Pg.108]

The variations in D and D and the much larger value for In show the limitations of a simple hydrogen atom model. Other elements, particularly transition metals, tend to introduce several deep levels in the energy gap. For example, gold introduces a donor level 0.54 eV below D and an acceptor level 0.35 eV above D in siHcon. Because such impurities are effective aids to the recombination of electrons and holes, they limit carrier lifetime. [Pg.345]

Charge carriers in a semiconductor are always in random thermal motion with an average thermal speed, given by the equipartion relation of classical thermodynamics as m v /2 = 3KT/2. As a result of this random thermal motion, carriers diffuse from regions of higher concentration. Applying an electric field superposes a drift of carriers on this random thermal motion. Carriers are accelerated by the electric field but lose momentum to collisions with impurities or phonons, ie, quantized lattice vibrations. This results in a drift speed, which is proportional to the electric field = p E where E is the electric field in volts per cm and is the electron s mobility in units of cm /Vs. [Pg.346]

Instead of depending on the thermally generated carriers just described (intrinsic conduction), it is also possible to deUberately incorporate various impurity atoms into the sihcon lattice that ionize at relatively low temperatures and provide either free holes or electrons. In particular. Group 13 (IIIA) elements n-type dopants) supply electrons and Group 15 (VA) elements (p-type dopants) supply holes. Over the normal doping range, one impurity atom supphes one hole or one electron. Of these elements, boron (p-type), and phosphoms, arsenic, and antimony (n-type) are most commonly used. When... [Pg.530]


See other pages where Carriers impurity is mentioned: [Pg.206]    [Pg.119]    [Pg.206]    [Pg.119]    [Pg.2882]    [Pg.2888]    [Pg.244]    [Pg.244]    [Pg.113]    [Pg.113]    [Pg.114]    [Pg.114]    [Pg.115]    [Pg.119]    [Pg.410]    [Pg.422]    [Pg.426]    [Pg.426]    [Pg.431]    [Pg.435]    [Pg.446]    [Pg.470]    [Pg.421]    [Pg.343]    [Pg.369]    [Pg.379]    [Pg.507]    [Pg.531]    [Pg.531]    [Pg.531]    [Pg.532]    [Pg.532]    [Pg.507]    [Pg.432]    [Pg.107]    [Pg.162]    [Pg.765]    [Pg.534]    [Pg.94]    [Pg.15]   
See also in sourсe #XX -- [ Pg.464 ]

See also in sourсe #XX -- [ Pg.464 ]




SEARCH



Carrier gas impurities

© 2024 chempedia.info