Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylic esters asymmetric hydrogenation

Asymmetric hydrogenation has been achieved with dissolved Wilkinson type catalysts (A. J. Birch, 1976 D. Valentine, Jr., 1978 H.B. Kagan, 1978). The (R)- and (S)-[l,l -binaph-thalene]-2,2 -diylblsCdiphenylphosphine] (= binap ) complexes of ruthenium (A. Miyashita, 1980) and rhodium (A. Miyashita, 1984 R. Noyori, 1987) have been prepared as pure atrop-isomers and used for the stereoselective Noyori hydrogenation of a-(acylamino) acrylic acids and, more significantly, -keto carboxylic esters. In the latter reaction enantiomeric excesses of more than 99% are often achieved (see also M. Nakatsuka, 1990, p. 5586). [Pg.102]

Azirines can be prepared in optically enriched form by the asymmetric Neber reaction mediated by Cinchona alkaloids. Thus, ketoxime tosylates 173, derived from 3-oxocarhoxylic esters, are converted to the azirine carboxylic esters 174 in the presence of a large excess of potassium carbonate and a catalytic amount of quinidine. The asymmetric bias is believed to be conferred on the substrate by strong hydrogen bonding via the catalyst hydroxyl group <96JA8491>. [Pg.61]

Prochiral organic acids were hydrogenated on clay-supported Rh-chiral phosphine complexes.205,206 Hectorite-supported chiral Rh(I)-phosphine complexes were used for the asymmetric hydrogenation of a,P-unsaturated carboxylic acids.207 It was found that the interaction between the a-ester group of itaconates and phenyl groups of phosphine can play an important role in the determination of the configuration of products. [Pg.265]

Noyori, R., Ohkuma, T., Kitamura, M., Takaya, H., Sayo, N., Kumobayashi, H., and Akutagawa, S. (1987). Asymmetric hydrogenation ofb-keto carboxylic esters. A practical, purely chemical access to b-hydroxy esters in high enantiomeric purity. J. Am. Chem. Soc. 109, 5856-5858. [Pg.353]

ASYMMETRIC HYDROGENATION OF 3-OXO CARBOXYLATES USING BINAP-RUTHENIUM COMPLEXES (R)-(-)-METHYL 3-HYDROXYBUTANOATE (Butanoic acid, 3-hydroxy-, methyl ester, (R)-)... [Pg.137]

In the early 1990s, Burk introduced a new series of efficient chiral bisphospholane ligands BPE and DuPhos.55,55a-55c The invention of these ligands has expanded the scope of substrates in Rh-catalyzed enantioselective hydrogenation. For example, with Rh-DuPhos or Rh-BPE as catalysts, extremely high efficiencies have been observed in the asymmetric hydrogenation of a-(acylamino)acrylic acids, enamides, enol acetates, /3-keto esters, unsaturated carboxylic acids, and itaconic acids. [Pg.7]

Dynamic Resolution of Chirally Labile Racemic Compounds. In ordinary kinetic resolution processes, however, the maximum yield of one enantiomer is 50%, and the ee value is affected by the extent of conversion. On the other hand, racemic compounds with a chirally labile stereogenic center may, under certain conditions, be converted to one major stereoisomer, for which the chemical yield may be 100% and the ee independent of conversion. As shown in Scheme 62, asymmetric hydrogenation of 2-substituted 3-oxo carboxylic esters provides the opportunity to produce one stereoisomer among four possible isomers in a diastereoselective and enantioselective manner. To accomplish this ideal second-order stereoselective synthesis, three conditions must be satisfied (1) racemization of the ketonic substrates must be sufficiently fast with respect to hydrogenation, (2) stereochemical control by chiral metal catalysts must be efficient, and (3) the C(2) stereogenic center must clearly differentiate between the syn and anti transition states. Systematic study has revealed that the efficiency of the dynamic kinetic resolution in the BINAP-Ru(H)-catalyzed hydrogenation is markedly influenced by the structures of the substrates and the reaction conditions, including choice of solvents. [Pg.241]

Rhodium and palladium catalysts that contain 4 display high enantioselectivities for the asymmetric hydrogenation of enamides, itaconates, P-keto esters, asymmetric hydroboration, and asymmetric allylic alkylation,80 82 but this ligand system distinguishes itself from other chiral bisphos-phines in the asymmetric reduction of tetrahydropyrazines and tetrasubstituted olefins (see also Chapter 15). The reduction of tetrahydropyrazines produces the piperazine-2-carboxylate core,... [Pg.198]

This ligand, MeO-BIPHEP (96a), has shown similar reactivities and enantioselectivities to catalysts that contain BINAP.117 Ruthenium catalysts that contain MeO-BIPHEP have been used in several asymmetric hydrogenations from bench scale to multi-ton scale, which include the large-scale preparation of a P-keto ester, an aryl ketone, allylic alcohol, and several oc,P-unsaturated carboxylic acid substrates, which are shown in Figure 12.5. [Pg.209]

Ruthenium and rhodium complexes that contain TMBTP have shown utility in the asymmetric hydrogenation of allylic alcohols,155,156 P-keto esters,155,157 and a,P-unsaturated carboxylic acids.155... [Pg.219]

The asymmetric hydrogenation of enol esters is an alternative to asymmetric ketone hydrogenation. The precursors can be prepared from the ketones but also via ruthenium-catalyzed addition of the carboxylic acids to the 2-postion of terminal alkynes. This latter method allows the study of the effect of the carboxylate on the enantioselectivity of the asymmetric hydrogenation. A remarkable study by Reetz and colleagues established that it is possible to hydrogenate enolate... [Pg.275]

A considerable success has been realized for asymmetric hydrogenation of functionalized alkenes since the discovery of BINAP-Ru complexes in the mid-1980s [5]. The details are described in each of the following substrates, enamides, alkenyl esters and ethers, a,/3- and /3,y-unsaturated carboxylic acids, a,/3-unsaturated esters and ketones, and allylic and homoallylic alcohols. [Pg.6]

Scheme 15 illustrates the asymmetric hydrogenation of 3-keto phosphonates catalyzed by a BINAP-Ru complex, giving P-hydroxy phosphonates in up to 99% ee [61]. The sense of enantioface differentiation is the same as that of hydrogenation of P-keto carboxylic esters (see table of Scheme 3). The reactivity of the phosphonates is much higher than that of the carboxylic esters so that the hydrogenation proceeds even at 1 to 4 atm of hydrogen and at room temperature. A Ru complex of BDPP also shows high enantioselectivity [46b]. Chiral P-hydroxy phosphonates thus obtained are useful intermediates for the syntheses of phosphonic acid-based antibiotics as well as haptens of catalytic antibodies. Similarly, P-keto thiophosphates are hydrogenated enantioselectively with a MeO-BIPHEP-Ru catalyst [61b]. Scheme 15 illustrates the asymmetric hydrogenation of 3-keto phosphonates catalyzed by a BINAP-Ru complex, giving P-hydroxy phosphonates in up to 99% ee [61]. The sense of enantioface differentiation is the same as that of hydrogenation of P-keto carboxylic esters (see table of Scheme 3). The reactivity of the phosphonates is much higher than that of the carboxylic esters so that the hydrogenation proceeds even at 1 to 4 atm of hydrogen and at room temperature. A Ru complex of BDPP also shows high enantioselectivity [46b]. Chiral P-hydroxy phosphonates thus obtained are useful intermediates for the syntheses of phosphonic acid-based antibiotics as well as haptens of catalytic antibodies. Similarly, P-keto thiophosphates are hydrogenated enantioselectively with a MeO-BIPHEP-Ru catalyst [61b].

See other pages where Carboxylic esters asymmetric hydrogenation is mentioned: [Pg.352]    [Pg.447]    [Pg.5]    [Pg.4]    [Pg.5]    [Pg.35]    [Pg.857]    [Pg.160]    [Pg.59]    [Pg.125]    [Pg.104]    [Pg.8]    [Pg.15]    [Pg.17]    [Pg.51]    [Pg.789]    [Pg.819]    [Pg.81]    [Pg.170]    [Pg.218]    [Pg.276]    [Pg.94]    [Pg.1074]    [Pg.316]    [Pg.362]    [Pg.160]    [Pg.63]    [Pg.278]    [Pg.161]    [Pg.183]   
See also in sourсe #XX -- [ Pg.75 ]

See also in sourсe #XX -- [ Pg.75 ]




SEARCH



Hydrogenation ester

© 2024 chempedia.info