Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carboxylic acids-alkene => aldehydes

Arene(tricarbonyl)chromium complexes, 19 Nickel boride, 197 to trans-alkenes Chromium(II) sulfate, 84 of anhydrides to lactones Tetrachlorotris[bis(l,4-diphenyl-phosphine)butane]diruthenium, 288 of aromatic rings Palladium catalysts, 230 Raney nickel, 265 Sodium borohydride-1,3-Dicyano-benzene, 279 of aryl halides to arenes Palladium on carbon, 230 of benzyl ethers to alcohols Palladium catalysts, 230 of carboxylic acids to aldehydes Vilsmeier reagent, 341 of epoxides to alcohols Samarium(II) iodide, 270 Sodium hydride-Sodium /-amyloxide-Nickel(II) chloride, 281 Sodium hydride-Sodium /-amyloxide-Zinc chloride, 281 of esters to alcohols Sodium borohydride, 278 of imines and related compounds Arene(tricarbonyl)chromium complexes, 19... [Pg.372]

When the vinyllithium intermediate (190) is treated with water, the procedure provides a useful synthetic method for the conversion of ketones to alkenes (Scheme 79). The method is illustrated by the conversions of the tosylhydrazones of phenyl isopropyl ketone (194) and dipropyl ketone (195) to the alkenes (196) and (197), respectively (Scheme 79). In this method, experiments have demonstrated that the hydrogen is derived from the water, as indicated in Scheme 79, and thatTMEDA is an excellent solvent. The vinyllithium intermediate (190) may be trapped by other electrophiles thus, with carbon dioxide and DMF, the reaction affords ,[i-unsaturated carboxylic acids and aldehydes like (198) and (199) (Scheme 80). [Pg.218]

Introduction.—The oxidative dehydrogenation of alcohols to aldehydes and ketones over various catalysts, including copper and particularly silver, is a well-established industrial process. The conversion of methanol to formaldehyde over silver catalysts is the most common process, with reaction at 750—900 K under conditions of excess methanol and at high oxygen conversion selectivities are in the region 80—95%. Isopropanol and isobutanol are also oxidized commercially in a similar manner. By-products from these reactions include carbon dioxide, carbon monoxide, hydrogen, carboxylic acids, alkenes, and alkanes. [Pg.90]

Given a Lewis structure, a condensed formula, or a line drawing for an organic compound, identify it as representing an alkane, alkene, alkyne, arene (aromatic), alcohol, carboxylic acid, ether, aldehyde, ketone, ester, amine, or amide. [Pg.697]

The dimethylsulphide adduct of thexylchloroborane reduces aliphatic carboxylic acids to aldehydes in 93-99% yields at 25 C. Investigations of the relative merits of dimethyl and diphenyl-bromoborane as reagents lor the cleavage of acetals and ketals have been reported as has a new method for the regioselective introduction of the oxycarbonyl or thioacetal functionalities into alkenes. ... [Pg.25]

Various oxygen nucleophiles such as water, alcohols, carboxylic acids, ketones, aldehydes, carbonates, amides, have been employed in gold catalysis to functionalize alkynes, allenes, or even alkenes [8], Their use allows the easy and generally efficient creation of at least one new C-O bond. A short selection of representative examples is shown in Scheme 16.13 [17]. [Pg.214]

Related Methods Section 60A (Protection of Aldehydes). Section 180A (Protection of Ketones). Also via Amylaiic Esters Section 306 (Alkyne - Ester). Alkenyl Acids Section 322 (Carboxylic Acid - Alkene). p-Hydroxy-esters Section 327 (Alcohol - Ester). [Pg.461]

Hydrides are available in many molecular sizes and possessing different reactivities. LiAIH reduces most unsaturated groups except alkenes and alkynes. NaBH is less reactive and reduces only aldehydes and ketones, but usually no carboxylic acids or esters (N.G. Gaylord, 1956 A. Haj6s, 1979). [Pg.96]

Aldehydes are easily oxidized to carboxylic acids under conditions of ozonide hydroly SIS When one wishes to isolate the aldehyde itself a reducing agent such as zinc is included during the hydrolysis step Zinc reduces the ozonide and reacts with any oxi dants present (excess ozone and hydrogen peroxide) to prevent them from oxidizing any aldehyde formed An alternative more modem technique follows ozone treatment of the alkene m methanol with reduction by dimethyl sulfide (CH3SCH3)... [Pg.263]

Oxidative reactions frequently represent a convenient preparative route to synthetic intermediates and end products This chapter includes oxidations of alkanes and cycloalkanes, alkenes and cycloalkenes, dienes, aromatic fluorocarbons, alcohols, phenols, ethers, aldehydes and ketones, carboxylic acids, nitrogen compounds, and organophosphorus, -sulfur, -selenium, -iodine, and -boron compounds... [Pg.321]

Alkenes are cleaved to carbonyl compounds by ozonolysis. This reaction is useful both for synthesis (preparation of aldehydes, ketones, or carboxylic acids) and analysis. When applied to analysis, the carbonyl compounds are isolated and identified, allowing the substituents attached to the double bond to be deduced. [Pg.274]

Methods of synthesis for carboxylic acids include (1) oxidation of alkyl-benzenes, (2) oxidative cleavage of alkenes, (3) oxidation of primary alcohols or aldehydes, (4) hydrolysis of nitriles, and (5) reaction of Grignard reagents with CO2 (carboxylation). General reactions of carboxylic acids include (1) loss of the acidic proton, (2) nucleophilic acyl substitution at the carbonyl group, (3) substitution on the a carbon, and (4) reduction. [Pg.774]

The adjacent iodine and lactone groupings in 16 constitute the structural prerequisite, or retron, for the iodolactonization transform.15 It was anticipated that the action of iodine on unsaturated carboxylic acid 17 would induce iodolactonization16 to give iodo-lactone 16. The cis C20-C21 double bond in 17 provides a convenient opportunity for molecular simplification. In the synthetic direction, a Wittig reaction17 between the nonstabilized phosphorous ylide derived from 19 and aldehyde 18 could result in the formation of cis alkene 17. Enantiomerically pure (/ )-citronellic acid (20) and (+)-/ -hydroxyisobutyric acid (11) are readily available sources of chirality that could be converted in a straightforward manner into optically active building blocks 18 and 19, respectively. [Pg.235]

Triple bonds can be monohydroborated to give vinylic boranes, which can be reduced with carboxylic acids to cis alkenes or oxidized and hydrolyzed to aldehydes or ketones. Terminal alkynes give aldehydes by this method, in contrast to the mercuric or acid-catalyzed addition of water discussed at 15-4. However, terminal alkynes give vinylic boranes (and hence aldehydes) only when treated with a hindered borane such as 47, 48, or catecholborane (p. 798)," or with BHBr2—SMe2. The reaction between terminal alkynes and BH3 produces 1,1-... [Pg.1015]

Similar additions have been successfully carried out with carboxylic acids, anhydrides, acyl halides, carboxylic esters, nitriles, and other types of compounds. These reactions are not successful when the alkene contains electron-withdrawing groups such as halo or carbonyl groups. A free-radical initiator is required, usually peroxides or UV light. The mechanism is illustrated for aldehydes but is similar for the other compounds ... [Pg.1034]

There are actually three reactions called by the name Schmidt reaction, involving the addition of hydrazoic acid to carboxylic acids, aldehydes and ketones, and alcohols and alkenes. The most common is the reaction with carboxylic acids, illustrated above.Sulfuric acid is the most common catalyst, but Lewis acids have also been used. Good results are obtained for aliphatic R, especially for long chains. When R is aryl, the yields are variable, being best for sterically hindered compounds like mesi-toic acid. This method has the advantage over 18-13 and 18-14 that it is just one laboratory step from the acid to the amine, but conditions are more drastic. Under the acid conditions employed, the isocyanate is virtually never isolated. [Pg.1413]


See other pages where Carboxylic acids-alkene => aldehydes is mentioned: [Pg.17]    [Pg.17]    [Pg.133]    [Pg.403]    [Pg.158]    [Pg.158]    [Pg.162]    [Pg.241]    [Pg.144]    [Pg.293]    [Pg.873]    [Pg.611]    [Pg.609]    [Pg.1282]    [Pg.1283]    [Pg.1307]    [Pg.172]    [Pg.1014]    [Pg.1022]    [Pg.1335]    [Pg.1424]    [Pg.1520]    [Pg.1522]    [Pg.1526]    [Pg.1627]   
See also in sourсe #XX -- [ Pg.749 , Pg.751 ]




SEARCH



Aldehydes acidity

Aldehydes alkenation

Aldehydes alkenic

Alkene aldehydes

Alkenes acidity

Alkenes carboxylated

Alkenes carboxylation

Carboxylic acids alkenes

Carboxylic acids alkenic

© 2024 chempedia.info