Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxide carboxylation

For example, by using an ethylene-butylaciylate-methaciylic acid ionomer (Pj) in combination with an ethylene-butylacrylate-glycidyl methacrylate (E-BA-GMA) terpolymer (P2), a grafting or cross-linking reaction between the two elastomers via the carboxyl/epoxide addition reaction (Eq. 19.6) is expected to take place during the melt blending with the polyamide. [Pg.1809]

Epoxides provide another useful a -synthon. Nucleophilic ring opening with dianions of carboxylic acids (P.L. Creger, 1972) leads to y-hydroxy carboxylic acids or y-lactones. Addition of imidoester anions to epoxides yields y-hydroxyaldehyde derivatives after reduction (H.W. Adickes, 1969). [Pg.63]

Alkene Peroxy acid Epoxide Carboxylic acid... [Pg.693]

These monomers provide a means for introducing carboxyl groups into copolymers. In copolymers these acids can improve adhesion properties, improve freeze-thaw and mechanical stability of polymer dispersions, provide stability in alkalies (including ammonia), increase resistance to attack by oils, and provide reactive centers for cross-linking by divalent metal ions, diamines, or epoxides. [Pg.1013]

Alkoxide-Type Initiators. Using the guide that an appropriate initiator should have approximately the same stmcture and reactivity as the propagating anionic species (see Table 1), alkoxide, thioalkoxide, carboxylate, and sUanolate salts would be expected to be usehil initiators for the anionic polymeri2ation of epoxides, thikanes, lactones, and sUoxanes, respectively (106—108). Thus low molecular weight poly(ethylene oxide) can be prepared... [Pg.240]

The zwitterion (6) can react with protic solvents to produce a variety of products. Reaction with water yields a transient hydroperoxy alcohol (10) that can dehydrate to a carboxyUc acid or spHt out H2O2 to form a carbonyl compound (aldehyde or ketone, R2CO). In alcohoHc media, the product is an isolable hydroperoxy ether (11) that can be hydrolyzed or reduced (with (CH O) or (CH2)2S) to a carbonyl compound. Reductive amination of (11) over Raney nickel produces amides and amines (64). Reaction of the zwitterion with a carboxyUc acid to form a hydroperoxy ester (12) is commercially important because it can be oxidized to other acids, RCOOH and R COOH. Reaction of zwitterion with HCN produces a-hydroxy nitriles that can be hydrolyzed to a-hydroxy carboxyUc acids. Carboxylates are obtained with H2O2/OH (65). The zwitterion can be reduced during the course of the reaction by tetracyanoethylene to produce its epoxide (66). [Pg.494]

Reaction conditions depend on the reactants and usually involve acid or base catalysis. Examples of X include sulfate, acid sulfate, alkane- or arenesulfonate, chloride, bromide, hydroxyl, alkoxide, perchlorate, etc. RX can also be an alkyl orthoformate or alkyl carboxylate. The reaction of cycHc alkylating agents, eg, epoxides and a2iridines, with sodium or potassium salts of alkyl hydroperoxides also promotes formation of dialkyl peroxides (44,66). Olefinic alkylating agents include acycHc and cycHc olefinic hydrocarbons, vinyl and isopropenyl ethers, enamines, A[-vinylamides, vinyl sulfonates, divinyl sulfone, and a, P-unsaturated compounds, eg, methyl acrylate, mesityl oxide, acrylamide, and acrylonitrile (44,66). [Pg.109]

The tert-huty hydroperoxide is then mixed with a catalyst solution to react with propylene. Some TBHP decomposes to TBA during this process step. The catalyst is typically an organometaHic that is soluble in the reaction mixture. The metal can be tungsten, vanadium, or molybdenum. Molybdenum complexes with naphthenates or carboxylates provide the best combination of selectivity and reactivity. Catalyst concentrations of 200—500 ppm in a solution of 55% TBHP and 45% TBA are typically used when water content is less than 0.5 wt %. The homogeneous metal catalyst must be removed from solution for disposal or recycle (137,157). Although heterogeneous catalysts can be employed, elution of some of the metal, particularly molybdenum, from the support surface occurs (158). References 159 and 160 discuss possible mechanisms for the catalytic epoxidation of olefins by hydroperoxides. [Pg.138]

Work in the mid-1970s demonstrated that the vitamin K-dependent step in prothrombin synthesis was the conversion of glutamyl residues to y-carboxyglutamyl residues. Subsequent studies more cleady defined the role of vitamin K in this conversion and have led to the current theory that the vitamin K-dependent carboxylation reaction is essentially a two-step process which first involves generation of a carbanion at the y-position of the glutamyl (Gla) residue. This event is coupled with the epoxidation of the reduced form of vitamin K and in a subsequent step, the carbanion is carboxylated (77—80). Studies have provided thermochemical confirmation for the mechanism of vitamin K and have shown the oxidation of vitamin KH2 (15) can produce a base of sufficient strength to deprotonate the y-position of the glutamate (81—83). [Pg.156]

The dianions derived from furan- and thiophene-carboxylic acids by deprotonation with LDA have been reacted with various electrophiles (Scheme 64). The oxygen dianions reacted efficiently with aldehydes and ketones but not so efficiently with alkyl halides or epoxides. The sulfur dianions reacted with allyl bromide, a reaction which failed in the case of the dianions derived from furancarboxylic acids, and are therefore judged to be the softer nucleophiles (81JCS(Pl)1125,80TL505l). [Pg.72]

In turn the oxazoline-containing polymer may then react very rapidly (e.g. at 240°C) with such groups as carboxyls, amines, phenols, anhydrides or epoxides, which may be present in other polymers. This reaction will link the two polymers by a rearrangement reaction similar to that involved in a rearrangement polymerisation without the evolution of water or any gaseous condensation products (Figure 7.14). [Pg.156]

Low molecular weight liquid nitrile rubbers with vinyl, carboxyl or mercaptan reactive end groups have been used with acrylic adhesives, epoxide resins and polyesters. Japanese workers have produced interesting butadiene-acrylonitrile alternating copolymers using Ziegler-Natta-type catalysts that are capable of some degree of ciystallisation. [Pg.294]

In some instances it is desired to produce a more open network from epoxide resins that have been acid-cured. This may be achieved by the oligoesterdi-carboxylic acids of general structure... [Pg.760]

Carboxylic acids with multifunctional epoxides or epoxy functional monomers... [Pg.496]

Group of plastics composed of resins produced by reactions of epoxides or oxiranes with compounds such as amines, phenols, alcohols, carboxylic acids, acid anhydrides and unsaturated compounds. [Pg.132]

Production and Uses of Aliphatic Compounds II Ether, Epoxide and Pnlyeiher, Carboxylic Acids and Their Denvatives, Sulfonic Acids, Toxicological Data of Aliphatic Fluorine Compounds (Ger) Liebig, H, Ulm, K Chem Ztg 100 3-14 270... [Pg.13]

Most frequent are oxidations of alkenes that can be converted to a series of compounds such as epoxides, halohydnns and their esters, ozonides (1,2,4 tri-oxolanes), a-hydroxyketones, a-hydroxyketone fluorosulfonates, ot-diketones, and carboxylic acids and their denvatives... [Pg.321]


See other pages where Epoxide carboxylation is mentioned: [Pg.165]    [Pg.86]    [Pg.137]    [Pg.537]    [Pg.220]    [Pg.5]    [Pg.140]    [Pg.217]    [Pg.165]    [Pg.86]    [Pg.137]    [Pg.537]    [Pg.220]    [Pg.5]    [Pg.140]    [Pg.217]    [Pg.327]    [Pg.261]    [Pg.273]    [Pg.545]    [Pg.549]    [Pg.550]    [Pg.241]    [Pg.321]    [Pg.35]    [Pg.123]    [Pg.178]    [Pg.261]    [Pg.273]   
See also in sourсe #XX -- [ Pg.182 ]




SEARCH



Carboxylation of epoxides

Carboxylic acids dianions, reaction with epoxides

Carboxylic acids epoxidation

Carboxylic acids reactions with epoxides

Epoxide/carboxylic acid

Epoxides carboxylates

Epoxides carboxylates

Epoxides reactions with carboxylic

Epoxides with carboxylic acids

Unsaturated carboxylic acids epoxidation

Unsaturated carboxylic esters epoxidation

© 2024 chempedia.info