Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyls, chromium molybdenum

The neutral complexes of chromium, molybdenum, tungsten, and vanadium are six-coordinate and the CO molecules are arranged about the metal in an octahedral configuration as shown in stmcture (3). Vanadium carbonyl possesses an unpaired electron and would be expected to form a metal—metal bond. Steric hindrance may prevent dimerization. The other hexacarbonyls are diamagnetic. [Pg.63]

Complexes (191) and (192) are formed from dimethyldiazirine with carbonyls of chromium, molybdenum and tungsten. They show no tendency towards N—N cleavage (80JOM(193)57). Complex (193) is made from a mixed complex by displacement of norbor-nadiene. [Pg.220]

Many carbonyl and carbonyl metallate complexes of the second and third row, in low oxidation states, are basic in nature and, for this reason, adequate intermediates for the formation of metal— metal bonds of a donor-acceptor nature. Furthermore, the structural similarity and isolobal relationship between the proton and group 11 cations has lead to the synthesis of a high number of cluster complexes with silver—metal bonds.1534"1535 Thus, silver(I) binds to ruthenium,15 1556 osmium,1557-1560 rhodium,1561,1562 iron,1563-1572 cobalt,1573 chromium, molybdenum, or tungsten,1574-1576 rhe-nium, niobium or tantalum, or nickel. Some examples are shown in Figure 17. [Pg.988]

The mononuclear metal carbonyls contain only one metal atom, and they have comparatively simple structures. For example, nickel tetracarbonyl is tetrahedral. The pentacarbonyls of iron, ruthenium, and osmium are trigonal bipyramidal, whereas the hexacarbonyls of vanadium, chromium, molybdenum, and tungsten are octahedral. These structures are shown in Figure 21.1. [Pg.742]

Sulfoxide adducts of chromium, molybdenum, and tungsten carbonyls have been studied as catalysts for the polymerization of monomers such as vinyl chloride (248). Simple adducts of the type [M(CO)5(Me2SO)] may be prepared by carbonyl displacement from the corresponding hexacarbonyl. Photochemical reactions are frequently necessary to cause carbonyl displacement in this manner, many carbonyl complexes of higher sulfoxides have been prepared (255, 256). Infrared (257) and mass spectral studies (154) of these complexes have appeared, and infrared data suggest that S-bonding may occur in Cr(0) sulfoxide complexes, although definitive studies have not been reported. [Pg.168]

The work cited in sections 2.4 and 2.5 is representative of the SN1 substitution reactions of metal carbonyls. However, a much more extensive and detailed account has recently been published covering similar reactions of vanadium, chromium, molybdenum, tungsten, rhenium, iron and nickel carbonyls in addition to those of manganese and cobalt2 9a. [Pg.208]

In a three-component reaction, a cationic platinum isocyanide complex [(Ph3P)2Pt(CNR)Cl][BF4] is reacted with a /3-bromoamine and butyl lithium to give an imidazoldin-2-ylidene complex.This transformation can be a two-component reaction if the isocyanide ligand contains already the necessary amine functionality. This was shown for chromium, molybdenum, tungsten, and rhenium carbonyls. [Pg.26]

The M(C0)6 (M = Cr, Mo, W) stable carbonyls have been used to prepare metal supported catalysts of elements of group 6 that have been used as catalysts in several reactions, such as metathesis, water-gas shift, CO hydrogenation and olefin hydrogenation and polymerization [15-24]. Table 8.2 compiles several examples in which M(CO)s (M = Cr, Mo, W) compounds are used as an alternative for preparing chromium-molybdenum or tungsten-based catalysts. [Pg.317]

CjHjS, Thiophene, tetrahydro-gold complexes, 26 85-87 C4H,NO, 2-Propenamide, 2-methyl-nickel complex, 26 205 C4H1()02, Ethane, 1,2-dimethoxy-solvates of chromium, molybdenum, and tungsten carbonyl cyclopentadienyl complexes, 6 343 tungsten complex, 26 50 ytterbium complex, 26 22 C4H i02.NaC5H5, Ethane, 1,2-dimethoxy-compd. with cyclopentadienylsodium, 26 341... [Pg.414]

Uike chromium, molybdenum forms a number of cyclopeniadicuyl Compounds, many of which are carbonyls, e.g.. CsHsMo(CO)-NO. CsHs MotCOtjX (where X may be Cl. Br. I, H. or CvH-). [Pg.1039]

Complexation of 100 with carbonyl complexes of chromium, molybdenum, and tungsten yielded liquid crystalline complexes lOla-c [114] (Scheme 50). All derivatives 101 melted at similar temperatures into the columnar rectangular mesophase (deduced from WAXS and SAXS measurements). However, the clearing points were strongly dependent on the metal center and increased with increasing atom number. Upon complexation, the aza crown macrocycle loses its flexibility, with the metal carbonyl fragment located above the crown leading to a cone-shaped... [Pg.162]

In 1980 we published a survey (1) of our major results in this area as of late 1979. These results include extensive work on binuclear CF N PF complexes of cobalt (2,3,4,5) and nickel (6). This paper summarizes our more recent results in this area with particular emphasis on binuclear complexes of chromium, molybdenum, and tungsten as well as some new results on iron carbonyl derivatives. [Pg.489]

Their strong reducing nature is a special characteristic of the penta-carbonyl metalates(-II) and decacaibonyl dimetalates(—I) of chromium, molybdenum, and tungsten that distinguishes them from the other carbonyl metalate anions of the 3d metals, e.g., [Co(CO)J. The oxidation of the mononuclear species with water... [Pg.10]

The reaction, of metal carbonyls with 1,3-diketones generally results in a complete displacement of carbon monoxide accompanied by oxidation of the metal to yield 1,3-diketonato complexes. For example, iron pentacarbonyl, chromium hexa-carbonyl, and molybdenum hexacarbonyl afford FefCgHjOOs,1 Cr(CsHr02)8,2 and Mo(CgH702)s,2,s respectively, when allowed to react with 2,4-pentanedione. [Pg.81]

Diethyl(ethylene)tellurourea formed complexes with chromium, molybdenum, tungsten, and manganese carbonyls, in which the tellurium is coordinated to the transition metal1. The solid complexes are moderately stable in air. They do not decompose when stored in the dark at 20° under an inert atmosphere. A toluene solution of the chromium complex at 20° deposited tellurium forming the chromium-carbene complex1. [Pg.520]

Fe2(CO)9, and Fe3(CO)12, respectively. Similar disproportionations occurred with Ni(CO)4 and Co2(CO)8 which gave anionic species such as [Ni2(CO)6]2, [Ni3(CO)8]2, [Co(CO)4] , etc., upon treatment with ammonia or other amines. In contrast to the carbonyls of iron, nickel and cobalt, those of chromium, molybdenum and tungsten reacted with pyridine and 1,2-ethylenediamine to afford substitution products of the general composition M(CO)6 (py) (n = 1, 2, and 3) and M(CO)4(en) with the metal remaining in the oxidation state zero [25], Mainly as the result of this work, Hieber became convinced that the metal carbonyls should be regarded as true coordination compounds, and the coordinated CO should not be considered a radical but a monodentate ligand like NH3, pyridine, etc. He held this view despite the criticism by several of his contemporaries [3, 19] and was very pleased to see that in most textbooks published after 1940 this view had been accepted. [Pg.90]


See other pages where Carbonyls, chromium molybdenum is mentioned: [Pg.199]    [Pg.126]    [Pg.455]    [Pg.126]    [Pg.199]    [Pg.27]    [Pg.523]    [Pg.341]    [Pg.413]    [Pg.428]    [Pg.523]    [Pg.894]    [Pg.207]    [Pg.118]    [Pg.18]    [Pg.285]    [Pg.297]    [Pg.157]    [Pg.37]    [Pg.98]    [Pg.145]    [Pg.205]    [Pg.240]    [Pg.54]    [Pg.629]    [Pg.642]    [Pg.647]   
See also in sourсe #XX -- [ Pg.26 , Pg.84 ]

See also in sourсe #XX -- [ Pg.15 , Pg.88 ]

See also in sourсe #XX -- [ Pg.26 , Pg.84 ]




SEARCH



Carbonyl complexes chromium, molybdenum, and tungsten

Carbonyl complexes, chromium cobalt-molybdenum-nickel

Carbonyl complexes, chromium cobalt-molybdenum-ruthenium

Carbonyl complexes, chromium molybdenum

Chromium carbonylation

Chromium carbonyls

Molybdenum carbonyl

© 2024 chempedia.info