Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl oxides defined

The ozonolysis reaction has been the subject of considerable mechanistic study. It is likely that in most cases the reaction proceeds by breakdown of the 1,3-dipolar cycloaddition product to a carbonyl oxide 99 and an aldehyde (or ketone) (5.99). The fate of the carbonyl oxide depends on the solvent and on its structure and the structure of the carbonyl compound. In an inert (non-participating) solvent, the carbonyl compound may react with the carbonyl oxide to form an ozonide 100 otherwise the carbonyl oxide may dimerize to the peroxide 101 or give ill-defined polymers. In nucleophilic solvents such as methanol or acetic acid, hydroperoxides of the type 102 are formed. [Pg.361]

The flash point of PPS, as measured by ASTM D1929, is greater than 500°C. Combustion products of PPS include carbon, sulfur oxides, and carbonyl sulfide. Specific hazards are defined by the OSHA Hazard Communication Standard (158). Based on information in 1995, PPS does not meet any of the hazard definitions of this standard. [Pg.451]

The acid number is mainly defined for rosins and rosin-derived resins and for phenol-modified resins. Standard hydrocarbon resins have zero acid number because the absence of functional groups. However, the acid number allows one to control deterioration by oxidation with formation of carbonyl and carboxyl groups in hydrocarbon resins. Typical acid number values of different resin types are ... [Pg.615]

It is well known that Rh(I) complexes can catalyze the carbonylation of methanol. A heterogenized catalyst was prepared by ion exchange of zeolite X or Y with Rh cations.126 The same catalytic cycle takes place in zeolites and in solution because the activation energy is nearly the same. The specific activity in zeolites, however, is less by an order of magnitude, suggesting that the Rh sites in the zeolite are not uniformly accessible. The oxidation of camphene was performed over zeolites exchanged with different metals (Mn, Co, Cu, Ni, and Zn).127 Cu-loaded zeolites have attracted considerable attention because of their unique properties applied in catalytic redox reactions.128-130 Four different Cu sites with defined coordinations have been found.131 It was found that the zeolitic media affects strongly the catalytic activity of the Cd2+ ion sites in Cd zeolites used to catalyze the hydration of acetylene.132... [Pg.257]

Silylformylation, defined as the addition of RsSi- and -CHO across various types of bonds using a silane R3SiH, CO, and a transition metal catalyst, was discovered by Murai and co-workers, who developed the Co2(CO)8-catalyzed silylformylation of aldehydes, epoxides, and cyclic ethers [26]. More recently, as described in detail in Section 5.3.1, below, alkynes and alkenes have been successfully developed as silylformylation substrates. These reactions represent a powerful variation on hydroformylation, in that a C-Si bond is produced instead of a C-H bond. Given that C-Si groups are subject to, among other reactions, oxidation to C-OH groups, silylformylation could represent an oxidative carbonylation of the type described in Scheme 5.1. [Pg.103]

Despite the mechanistic obscurity of C-H bond oxidation by chromic acid, regio-selectivity has been discerned in well defined systems [256]. For example, oxidation of enrfo-fenchyl acetate and the bomyl acetates (exo and endo) gives ketones in which the new carbonyl group is derived from a donor carbon. [Pg.146]

Support-bound transition metal complexes have mainly been prepared as insoluble catalysts. Table 4.1 lists representative examples of such polymer-bound complexes. Polystyrene-bound molybdenum carbonyl complexes have been prepared for the study of ligand substitution reactions and oxidative eliminations [51], Moreover, well-defined molybdenum, rhodium, and iridium phosphine complexes have been prepared on copolymers of PEG and silica [52]. Several reviews have covered the preparation and application of support-bound reagents, including transition metal complexes [53-59]. Examples of the preparation and uses of organomercury and organo-zinc compounds are discussed in Section 4.1. [Pg.165]

Other important tests are for acid and alkalinity number and for water content (266), because water content and alkalinity of the polyether glycol can influence the reaction with isocyanates. The standard ASTM test for acid and alkalinity number, ASTM D4662 (267), is not sensitive enough for the low acidity and alkalinity numbers of PTMEG, and special methods have been developed. A useful alkalinity number (AN) has been defined as milliequivalents KOH per 30 kg of PTMEG, as titrated in methanol solution with 0.005 N HC1 (268). Other useful nonstandard tests are for heavy metals, sulfated ash, and peroxide. The peroxides formed initially in oxidations are quickly transformed into carbonyl groups, which are detectable by infrared spectroscopy. On oxidation, a small C—O peak develops at 1726 cm-1 and can be detected in thick (0.5-mm) films. A relative ratio of this peak against an internal standard peak at 2075 C—O is sometimes defined as the carbonyl ratio. [Pg.366]

Similarly, nitrile oxides react with methyl acrylate 2.42 to give the adduct 2.43 with the substituent on C-5 and terminal alkenes also react in this way to place the alkyl group on C-5. Many dipoles react well with electron-rich dipolarophiles, but not with electron-poor dipolarophiles. Other dipoles are the other way round. To make matters even more complex, the presence of substituents on the dipole can change these patterns and impart their own regioselectivity. Thus the carbonyl ylid reaction 2.45 has a well defined regiochemistry determined only by the substituents, since the core dipole is symmetrical. This reaction also illustrates the point that dipolarophiles do not have to be alkenes or alkynes—they can also have heteroatoms. [Pg.12]

The Griesbaum Coozonolysis allows the preparation of defined, tetrasubsituted ozonides (1,2,4-trioxolanes) by the reaction of O-methyl oximes with a carbonyl compound in the presence of ozone. In contrast to their traditional role as intermediates in oxidative alkene cleavage, 1,2,4-trioxolanes with bulky substituents are isolable and relatively stable compounds. [Pg.116]


See other pages where Carbonyl oxides defined is mentioned: [Pg.247]    [Pg.366]    [Pg.430]    [Pg.439]    [Pg.906]    [Pg.91]    [Pg.199]    [Pg.490]    [Pg.611]    [Pg.300]    [Pg.294]    [Pg.181]    [Pg.230]    [Pg.116]    [Pg.124]    [Pg.75]    [Pg.27]    [Pg.164]    [Pg.113]    [Pg.302]    [Pg.7]    [Pg.16]    [Pg.334]    [Pg.353]    [Pg.114]    [Pg.80]    [Pg.566]    [Pg.98]    [Pg.565]    [Pg.265]    [Pg.66]    [Pg.40]    [Pg.4]    [Pg.70]    [Pg.434]    [Pg.2]    [Pg.758]   
See also in sourсe #XX -- [ Pg.242 ]




SEARCH



Carbonyl oxidation

Carbonyl oxide

Carbonylation oxide

Oxidant, defined

Oxidation carbonylative

Oxidation defined

Oxidation oxidative carbonylation

Oxidative carbonylation

Oxidative carbonylations

Oxides defined

© 2024 chempedia.info