Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl intramolecular cycloaddition

Simple olefins do not usually add well to ketenes except to ketoketenes and halogenated ketenes. Mild Lewis acids as well as bases often increase the rate of the cyclo addition. The cycloaddition of ketenes to acetylenes yields cyclobutenones. The cycloaddition of ketenes to aldehydes and ketones yields oxetanones. The reaction can also be base-cataly2ed if the reactant contains electron-poor carbonyl bonds. Optically active bases lead to chiral lactones (41—43). The dimerization of the ketene itself is the main competing reaction. This process precludes the parent compound ketene from many [2 + 2] cyclo additions. Intramolecular cycloaddition reactions of ketenes are known and have been reviewed (7). [Pg.474]

Keywords carbonyl compounds, chiral dienophiles, chiral dienes, chiral catalysts, intramolecular cycloadditions, chiral Lewis acids... [Pg.312]

Polycyclic oxetanes are obtained in good yields in intramolecular carbonyl-olefin cycloadditions, in an analogous way as the corresponding alicyclic systems are formed in intramolecular enone-olefin additions. Two applications are given in (4.78)492) and in (4.79)493). [Pg.67]

If the mesomeric stabilization is provided by a double bond, the lithiated species is a homoenolate synthon, as shown in Scheme 44a. Reaction with an electrophile typically occurs at the y-position, yielding an enamine, which can then be hydrolyzed to a carbonyl compound. An important application of this approach is to incorporate a chiral auxiliary into the nitrogen substituents so as to effect an asymmetric synthesis. 2-AzaaUyl anions (Scheme 44b), which are generated by tin-lithium exchange, can be useful reagents for inter- and intramolecular cycloaddition reactions. ... [Pg.1032]

As with any modern review of the chemical Hterature, the subject discussed in this chapter touches upon topics that are the focus of related books and articles. For example, there is a well recognized tome on the 1,3-dipolar cycloaddition reaction that is an excellent introduction to the many varieties of this transformation [1]. More specific reviews involving the use of rhodium(II) in carbonyl ylide cycloadditions [2] and intramolecular 1,3-dipolar cycloaddition reactions have also appeared [3, 4]. The use of rhodium for the creation and reaction of carbenes as electrophilic species [5, 6], their use in intramolecular carbenoid reactions [7], and the formation of ylides via the reaction with heteroatoms have also been described [8]. Reviews of rhodium(II) ligand-based chemoselectivity [9], rhodium(11)-mediated macrocyclizations [10], and asymmetric rho-dium(II)-carbene transformations [11, 12] detail the multiple aspects of control and applications that make this such a powerful chemical transformation. In addition to these reviews, several books have appeared since around 1998 describing the catalytic reactions of diazo compounds [13], cycloaddition reactions in organic synthesis [14], and synthetic applications of the 1,3-dipolar cycloaddition [15]. [Pg.433]

A carbonyl yhde approach to the tighane natural product phorbol 54 was demonstrated by Dauben, in which a convergent intramolecular cycloaddition was used to... [Pg.443]

The in situ formation of nitrones from oximes by 1,3-APT or 1,2-prototropy is clearly a powerful synthetic strategy but conventional nitrone generation, in particular hydroxylamine-carbonyl condensation, has been applied to numerous syntheses, in intra- and intermolecular mode (258). Accordingly, the ring systems similar to those synthesized using 1,3-APT/intramolecular nitrone-alkene cycloaddition (INAC) methodology by Heaney (313-315) (see Section 1.11.2) or Padwa and Norman (340) have been made using conventionally prepared nitrones (Scheme 1.67). As with the previous examples, once formed, the nitrones are suitably placed for a spontaneous intramolecular cycloaddition reaction with the... [Pg.55]

Epoxide 96 was prepared such that photolytic conversion to the carbonyl ylide could be followed by an intramolecular cycloaddition with the tethered pendant olefin. However, photolysis of epoxide 96 led only to the formation of the regio-isomer 97 and the aldehyde 98 with no evidence of the corresponding cycloadduct. It was presumed that 97 arose from the ylide by thermal recyclization to the epoxide while 98 could form through the loss of a carbene from the ylide. The failure of the tethered alkene to undergo cycloaddition may have resulted from a poor trajectory for the cycloaddition. An extended analogue (99) allowed greater flexibility for the dipolarophile to adopt any number of conformations. Photolysis of epoxide 99 did lead to formation of the macrocyclic adduct 100, albeit in modest yields. [Pg.268]

Decomposition of diazoketone 113 with rhodium acetate led to the formation of a tethered cyclic carbonyl ylide 114 that was poised to undergo an intramolecular cycloaddition, preparing 115 in 60% yield. Interestingly, if DMAD was added to the reaction mixture, the only product arose from intermolecular cycloaddition. [Pg.271]

Intramolecular ylide formation with the lactone carbonyl oxygen (53) in 145 provided a carbonyl ylide 146 that was trapped with Al-phenyl maleimide to give cycloadduct 147. Likewise (54), carbonyl yhde 149, derived from ester 148, suffers intramolecular cycloaddition with the tethered alkene to deliver acetal 150 in 87% yield. An enantioselective version of this process has also been described (Scheme 4.33). [Pg.275]

Lycorine is an alkaloid that has attracted attention from both the synthetic community and pharmacologists. Prior synthetic approaches have included inter-and intramolecular Diels-Alder cycloaddition. Based on a similar retrosynthetic disconnection, Padwa and co-workers (106,109) chose to use a push-pull carbonyl ylide cycloaddition with a disubstituted pyrrolidinone core to generate a tricyclic substrate. The major difference for this synthetic smdy was the availability of a labile proton a to the carbonyl moiety (Scheme 4.53). [Pg.288]

Friedrichsen and co-workers (135), along with Padwa, has utilized the carbonyl ylide cycloaddition to generate reactive furan moieties that can be further used in inter- or intramolecular Diels-Alder reactions to prepare aza- and carbocyclic compounds. Friedrichsen conducted a number of synthetic and theoretical studies on the reactivity, regioselectivity, and stereoselectivity of substituted furan formation and subsequent Diels-Alder reaction (Scheme 4.69). [Pg.297]

After completing his initial intramolecular cycloaddition, Hodgson utilized conditions that had been optimized for the intermolecular cycloaddition of DMAD with simple cyclic carbonyl ylides used by Hashimoto and co-workers (139). Hodgson et al. (140) found that the reaction indeed gave excellent overall chemical yield, but the enantioselectivity dropped to 1%, giving essentially a racemic mixture. It appeared that ee ratios were sensitive to the electronic nature of the dipole. Hodgson chose to screen several binaphthol derived rhodium catalysts of the type developed by McKervey and Pirrung, due in part to the reports of... [Pg.299]

The above dramatic dependence of regio- and stereoselectivity on the nature of the metal can be explained by the reaction mechanism shown in Scheme 11.49 (167). The nitrone cycloadditions of allylic alcohols are again magnesium-specific just like the nitrile oxide reactions described in Section 11.2.2. Magnesium ions accelerate the reaction through a metal ion-bound intramolecular cycloaddition path. On the other hand, zinc ions afford no such rate acceleration, but these ions catalyze the acetalization at the benzoyl carbonyl moiety of the nitrone to provide a hemiacetal intermediate. The subsequent intramolecular regio- and stereoselective cycloaddition reaction gives the observed products. [Pg.798]


See other pages where Carbonyl intramolecular cycloaddition is mentioned: [Pg.115]    [Pg.90]    [Pg.795]    [Pg.416]    [Pg.179]    [Pg.436]    [Pg.440]    [Pg.443]    [Pg.25]    [Pg.591]    [Pg.291]    [Pg.441]    [Pg.215]    [Pg.365]   


SEARCH



1,3-cycloaddition intramolecular

Carbonyl compounds intramolecular cycloadditions

Carbonyl intramolecular

Carbonyl ylides intramolecular -cycloaddition

Carbonyl ylides, cycloaddition with intramolecular generation

Carbonylative cycloadditions

Cycloaddition carbonylative

Intramolecular cycloadditions carbonyl ylide generation

© 2024 chempedia.info