Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds relative reactivities

A study518 of the mechanism of oxidation of alcohols by the reagent suggested that a reversible, oriented adsorption of the alcohol onto the surface of the oxidant occurs, with the oxygen atom of the alcohol forming a coordinate bond to a silver ion, followed by a concerted, irreversible, homolytic shift of electrons to generate silver atoms, carbon dioxide, water, and the carbonyl compound. The reactivity of a polyhydroxy compound may not, it appears, be deduced from the relative reactivity of its component functions, as the geometry of the adsorbed state, itself affected by solvent polarity, exerts an important influence on the selectivity observed.519... [Pg.98]

AH ahphatic aldehydes and most ketones react to form cyanohydrins. The lower reactivity of ketones, relative to aldehydes, is attributed to a combination of electron-donating effects and increased steric hindrance of the second alkyl group in the ketones. The magnitude of the equiUbrium constants for the addition of hydrogen cyanide to a carbonyl group is a measure of the stabiUty of the cyanohydrin relative to the carbonyl compound plus hydrogen cyanide ... [Pg.412]

Instead of the definition in Eq. (7-82), the selectivity is often written as log k,). Another way to consider a selectivity-reactivity relationship is to compare the relative effects of a series of substituents on a pair of reactions. This is what is done when Hammett plots are made for a pair of reactions and their p values are compared. The slope of an LEER is a function of the sensitivity of the process being correlated to structural or solvent changes. Thus, in a family of closely related LFERs, the one with the steepest slope is the most selective, and the one with the smallest slope is the least selective.Moreover, the intercept (or some arbitrarily selected abscissa value, usually log fco for fhe reference substituent) should be a measure of reactivity in each reaction series. Thus, a correlation should exist between the slopes (selectivity) and intercepts (reactivity) of a family of related LFERs. It has been suggested that the slopes and intercepts should be linearly related, but the conditions required for linearity are seldom met, and it is instead common to find only a rough correlation, indicative of normal selectivity-reactivity behavior. The Br nsted slopes, p, for the halogenation of a series of carbonyl compounds catalyzed by carboxylate ions show a smooth but nonlinear correlation with log... [Pg.372]

It is well known that aziridination with allylic ylides is difficult, due to the low reactivity of imines - relative to carbonyl compounds - towards ylide attack, although imines do react with highly reactive sulfur ylides such as Me2S+-CH2-. Dai and coworkers found aziridination with allylic ylides to be possible when the activated imines 22 were treated with allylic sulfonium salts 23 under phase-transfer conditions (Scheme 2.8) [15]. Although the stereoselectivities of the reaction were low, this was the first example of efficient preparation of vinylaziridines by an ylide route. Similar results were obtained with use of arsonium or telluronium salts [16]. The stereoselectivity of aziridination was improved by use of imines activated by a phosphinoyl group [17]. The same group also reported a catalytic sulfonium ylide-mediated aziridination to produce (2-phenylvinyl)aziridines, by treatment of arylsulfonylimines with cinnamyl bromide in the presence of solid K2C03 and catalytic dimethyl sulfide in MeCN [18]. Recently, the synthesis of 3-alkyl-2-vinyl-aziridines by extension of Dai s work was reported [19]. [Pg.41]

Dimethylsulfonium methylide is both more reactive and less stable than dimethylsulfoxonium methylide, so it is generated and used at a lower temperature. A sharp distinction between the two ylides emerges in their reactions with a, ( -unsaturated carbonyl compounds. Dimethylsulfonium methylide yields epoxides, whereas dimethylsulfoxonium methylide reacts by conjugate addition and gives cyclopropanes (compare Entries 5 and 6 in Scheme 2.21). It appears that the reason for the difference lies in the relative rates of the two reactions available to the betaine intermediate (a) reversal to starting materials, or (b) intramolecular nucleophilic displacement.284 Presumably both reagents react most rapidly at the carbonyl group. In the case of dimethylsulfonium methylide the intramolecular displacement step is faster than the reverse of the addition, and epoxide formation takes place. [Pg.178]

Among all the nucleophilic addition reactions of carbonyl compounds, allylation reaction has been the most successful, partly due to the relatively high reactivity of allyl halides. Various metals have been found to be effective in mediating such a reaction (Scheme 8.4). Among them, indium has emerged as the most popular metal for such a reaction. [Pg.225]

All of the elements of stereo- and regioselectivity and reactivity that theory must explain are found in the above reactions. The triplet excited states of the aryl carbonyl compounds demonstrate regioselectivity that has been previously explained on the basis of the relative stabilities of the two possible biradical intermediates, 1 and 2. 65>66> The selectivity... [Pg.150]

Once again, use of these donors as solvent may shift the reaction equilibrium towards the desired product. Since the reactivity of olefins is lower than that of carbonyl compounds, higher reaction temperatures are usually required to achieve acceptable TOFs, and then the relatively higher boiling hydrogen donating solvents mentioned above may be the best choice. [Pg.599]

Dehalogenation.1 DMBI effects dehalogenation of a-halo carbonyl compounds in a variety of ethereal solvents with formation of DMBI+X in generally high yield. The order of relative reactivity is Br > Cl > F (halides) and primary > secondary > tertiary (for the a-substituted position). In combination with HO Ac (1 equiv.) the reagent also reduces acyl chlorides to aldehydes (70-90% yield). [Pg.150]

Kinetic studies established that tetra-n-butylammonium borohydride in dichloromethane was a very effective reducing agent and that, by using stoichiometric amounts of the ammonium salt under homogeneous conditions, the relative case of reduction of various classes of carbonyl compounds was the same as that recorded for the sodium salt in a hydroxylic solvent, i.e. acid chlorides aldehydes > ketones esters. However, the reactivities, ranging from rapid reduction of acid chlorides at -780 C to incomplete reduction of esters at four days at 250 C, indicated the greater selectivity of the ammonium salts, compared with sodium borohydride [9], particularly as, under these conditions, conjugated C=C double bonds are not reduced. [Pg.478]

At low pH values, dimerization must involve the combination of two neutral carbon radicals since the same ( ) / meso ratio is obtained as from the photochemical reaction of the carbonyl compound in methanol [26], a process which also involves neutral radicals. The switch in isomer ratio to that characteristic of alkaline media occurs in the region of pH close to the value of pKj for the neutral radical. Dimerization then occurs in a fast reaction between the radical-anion and the neutral radical. In strongly alkaline solutions where the pH pK the major reactive species formed at the potential of the first reduction wave is the radical-anion. Reaction between two radical-anions is relatively slow due to coulorobic repulsion so that dimerization in strongly alkaline solution still occurs by reaction... [Pg.334]

Since tJtiis reaction is an equilibrium, the amount of cyanohydrin formed from any given carbonyl compound will depend on the relative stabilities of the carbonyl compound itself and the product. There can be many substituents X on a carbonyl compound R.CO.X, such as Cl, Me, NH2, Ph, OEt, H. Some have inductive effects, some conjugate with the carbonyl group. Some stabilise RCOX making it less reactive. Others activate it towards nucleophilic attack. Arrange the compounds RCOX, where X can be the substituents listed above, into an order of reactivity towards a nucleophile. [Pg.73]

In certain polyfluorinated cyclic compounds difiuoromethylene groups are hydrolyzed to carbonyl groups relatively easily.141 This is usually associated with the formation of cycloalkene intermediates, since the proximity of a C = C bond notably increases the reactivity of a difluoro-methylene group towards hydrolytic reactions. Thus, easy conversion of such groups to oxo groups has been observed in many cyclobutene derivatives. 2-Chloro-l,l,2-trifluoro-3-phenyl-cyclobutane is converted by potassium hydroxide into cyclobutene 1 and cyclobut-2-enone 2.141... [Pg.412]

Cyclopropane formation occurs from reactions between diazo compounds and alkenes, catalyzed by a wide variety of transition-metal compounds [7-9], that involve the addition of a carbene entity to a C-C double bond. This transformation is stereospecific and generally occurs with electron-rich alkenes, including substituted olefins, dienes, and vinyl ethers, but not a,(J-unsaturated carbonyl compounds or nitriles [23,24], Relative reactivities portray a highly electrophilic intermediate and an early transition state for cyclopropanation reactions [15,25], accounting in part for the relative difficulty in controlling selectivity. For intermolecular reactions, the formation of geometrical isomers, regioisomers from reactions with dienes, and enantiomers must all be taken into account. [Pg.195]


See other pages where Carbonyl compounds relative reactivities is mentioned: [Pg.330]    [Pg.416]    [Pg.457]    [Pg.463]    [Pg.470]    [Pg.731]    [Pg.82]    [Pg.253]    [Pg.482]    [Pg.237]    [Pg.241]    [Pg.89]    [Pg.85]    [Pg.56]    [Pg.390]    [Pg.237]    [Pg.61]    [Pg.716]    [Pg.23]    [Pg.72]    [Pg.257]    [Pg.372]    [Pg.418]    [Pg.333]    [Pg.76]    [Pg.693]    [Pg.716]    [Pg.74]    [Pg.336]    [Pg.26]    [Pg.86]    [Pg.157]    [Pg.107]    [Pg.612]   
See also in sourсe #XX -- [ Pg.319 , Pg.320 , Pg.321 , Pg.322 , Pg.632 , Pg.633 , Pg.634 , Pg.635 , Pg.636 ]

See also in sourсe #XX -- [ Pg.417 , Pg.418 , Pg.419 , Pg.420 ]




SEARCH



Carbonyl compounds reactivity

Reactive compounds

Reactivity compounds

Reactivity relative reactivities

Relative reactivities

The Relative Reactivities of Carbonyl Compounds

© 2024 chempedia.info