Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds excited state

To avoid synthetic problems, we prepared aldehyde 47, a substrate in which isomerization of the C-C double bond to the endocyclic position is less likely due to the extended conjugation of the alkene moiety. Compound 47 was obtained as a pure substance and also presents a substitution pattern that, according to the above postulates, should favor the ODPM rearrangement. However, irradiation of 47, using m-methoxyacetophenone as sensitizer, led to formation of the diene 48 (38%), as a result of photodecar-bonylation (Scheme 9). No ODPM product was formed in this process.Irradiation of the corresponding methyl ketone 49, under the same conditions as used for 47, afforded the product of 1,3-acyl migration 50 in 24% yield (Scheme 9). Again, no ODPM product was formed in this instance. The formation of 48 and 50 is reminiscent of Norrish Type 1 processes. However, in these cases, homolytic bond fission does not occur in the carbonyl nit excited state, as is the case in normal Norrish Type 1 reactions. ... [Pg.1555]

P-Peroxylactones undergo thermal decarboxylation to carbonyl compounds by the initial formation of a 1,5-diradical (238). a-Peroxylactones undergo similar decarboxylation, emitting light since the ketone is generated in the triplet excited state (85,239,240) ... [Pg.130]

For conjugated carbonyl compounds, such as a,) -enones, the orbital diagram would be similar, except for the recognition that the HOMO of the ground state is ij/2 of the enone system, rather than the oxygen lone-pair orbital. The excited states can sometimes be usefully represented as dipolar or diradical intermediates ... [Pg.754]

Two different alkenes can be brought to reaction to give a [2 -I- 2] cycloaddition product. If one of the reactants is an o, /3-unsaturated ketone 11, this will be easier to bring to an excited state than an ordinary alkene or an enol ether e.g. 12. Consequently the excited carbonyl compound reacts with the ground state enol ether. By a competing reaction pathway, the Patemo-Buchi reaction of the 0, /3-unsaturated ketone may lead to formation of an oxetane, which however shall not be taken into account here ... [Pg.78]

The irradiation is usually carried out with light of the near UV region, in order to activate only ihc n n transition of the carbonyl function," thus generating excited carbonyl species. Depending on the substrate, it can be a singlet or triplet excited state. With aromatic carbonyl compounds, the reactive species are usually in a Ti-state, while with aliphatic carbonyl compounds the reactive species are in a Si-state. An excited carbonyl species reacts with a ground state alkene molecule to form an exciplex, from which in turn diradical species can be formed—e.g. 4 and 5 in the following example ... [Pg.221]

Ordinary aldehydes and ketones can add to alkenes, under the influence of UV light, to give oxetanes. Quinones also react to give spirocyclic oxetanes. This reaction, called the Patemo-BUchi reaction,is similar to the photochemical dimerization of alkenes discussed at 15-61.In general, the mechanism consists of the addition of an excited state of the carbonyl compound to the ground state of the alkene. Both singlet (5i) and n,n triplet states have been shown to add to... [Pg.1249]

The excited state of the carbonyl compound is the (n, it ) state where one electron is excited from the HOMO to the LUMO. The SOMO is the n-orbital on the carbonyl oxygen atom. The SOMO is the antibonding jt -orbital. [Pg.20]

Four-membered ring formation between unsaturated carbon bonds and carbonyl compounds is a photochemical reaction [25], This is an excited-state reaction in the delocalization band (Scheme 6). [Pg.31]

Photocycloaddition of Alkenes and Dienes. Photochemical cycloadditions provide a method that is often complementary to thermal cycloadditions with regard to the types of compounds that can be prepared. The theoretical basis for this complementary relationship between thermal and photochemical modes of reaction lies in orbital symmetry relationships, as discussed in Chapter 10 of Part A. The reaction types permitted by photochemical excitation that are particularly useful for synthesis are [2 + 2] additions between two carbon-carbon double bonds and [2+2] additions of alkenes and carbonyl groups to form oxetanes. Photochemical cycloadditions are often not concerted processes because in many cases the reactive excited state is a triplet. The initial adduct is a triplet 1,4-diradical that must undergo spin inversion before product formation is complete. Stereospecificity is lost if the intermediate 1,4-diradical undergoes bond rotation faster than ring closure. [Pg.544]

In Chapter 3 we discussed two photochemical reactions characteristic of simple carbonyl compounds, namely type II cleavage and photoreduction. We saw that photoreduction appears to arise only from carbonyl triplet states, whereas type II cleavage often arises from both the excited singlet and triplet states. Each process was found to occur from discrete biradical intermediates. In this chapter we will discuss two other reactions observed in the photochemistry of carbonyls, type I cleavage and oxetane formation. [Pg.374]

Thus we see that in molecules possessing ->- 77 excited states inter-combinational transitions (intersystem crossing, phosphorescence, and non-radiative triplet decay) should be efficient compared to the same processes in aromatic hydrocarbons. This conclusion is consistent with the high phosphorescence efficiencies and low fluorescence efficiencies exhibited by most carbonyl and heterocyclic compounds. [Pg.436]

Lamola AA, Sharp LJ (1966) Environmental effects on the excited states of o-hydroxy aromatic carbonyl compounds. J Phys Chem 70 2634—2638... [Pg.262]

Electronically excited states of organic molecules, acid-base properties of, 12,131 Energetic tritium and carbon atoms, reactions of, with organic compounds, 2, 201 Enolisation of simple carbonyl compounds and related reactions, 18,1 Entropies of activation and mechanisms of reactions in solution, 1,1 Enzymatic catalysis, physical organic model systems and the problem of, 11, 1 Enzyme action, catalysis of micelles, membranes and other aqueous aggregates as models of, 17. 435... [Pg.337]

Concerted fragmentation of the transition state in the peroxy radical recombination yields carbonyl compound molecules in the excited triplet state, alcohol in its singlet ground state, and oxygen in its triplet ground state, in fulfilment of the spin selection rules. [Pg.75]

A clear division of Paterno-Biichi reactions into several distinct categories is possible on the basis of the type of reacting carbonyl compound (alkyl or aromatic), the excited state responsible for reaction (n—71 or Ti—n, singlet or triplet), and the type of olefin (electron deficient or electron-rich). Some examples of these reactions are given in Eqs. 7—11, where only the oxetane products are shown. [Pg.150]

All of the elements of stereo- and regioselectivity and reactivity that theory must explain are found in the above reactions. The triplet excited states of the aryl carbonyl compounds demonstrate regioselectivity that has been previously explained on the basis of the relative stabilities of the two possible biradical intermediates, 1 and 2. 65>66> The selectivity... [Pg.150]

The [2+2]-photocycloaddition of carbonyl groups with olefins (Paterno-Buchi reaction) is one of the oldest known photochemical reactions and has become increasingly important for the synthesis of complex molecules. Existing reviews have summarized the mechanistic considerations and defined the scope and limitations of this photocycloaddition73. Although this reaction likely proceeds via initial excitation of the carbonyl compound and not the excited state of the diene, the many examples of this reaction in natural product synthesis justify inclusion in this chapter. [Pg.297]

Figure 3.75 A model carbonyl compound with the amine group twisted for maximum delocalization of nN into the half-filled carbonyl n0 orbital of the 3n->-7T excited state. Figure 3.75 A model carbonyl compound with the amine group twisted for maximum delocalization of nN into the half-filled carbonyl n0 orbital of the 3n->-7T excited state.
Predict the products of the reactions of excited-state carbonyl compounds with alkenes (Paterno-Buchi reaction). [Pg.161]


See other pages where Carbonyl compounds excited state is mentioned: [Pg.431]    [Pg.296]    [Pg.394]    [Pg.149]    [Pg.235]    [Pg.215]    [Pg.115]    [Pg.400]    [Pg.104]    [Pg.105]    [Pg.108]    [Pg.1250]    [Pg.74]    [Pg.1219]    [Pg.45]    [Pg.354]    [Pg.165]    [Pg.291]    [Pg.154]    [Pg.163]    [Pg.74]    [Pg.147]    [Pg.297]    [Pg.317]    [Pg.123]    [Pg.122]    [Pg.31]    [Pg.177]   
See also in sourсe #XX -- [ Pg.162 ]

See also in sourсe #XX -- [ Pg.1116 , Pg.1117 ]




SEARCH



Excited States of Carbonyl Compounds

Excited States of Lignin Aromatic Carbonyl Model Compounds

State) compounds

© 2024 chempedia.info