Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds allylic oxidation

A simple two-step protocol for the generation of a terminal diene is to add allyl magnesium bromide to an aldehyde or a ketone and subsequent acid or base catalysed dehydration (equation 34)72. Cheng and coworkers used this sequence for the synthesis of some indole natural products (equation 35)72a. Regiospecific dienones can be prepared by 1,2-addition of vinyllithium to a,/l-unsaturated carbonyl compounds and oxidative rearrangement of the resulting dienols with pyridinium dichromate (equation 36)73. [Pg.378]

Oxidation of hydroxyl groups. This Bi(V) compound can be used, in the presence of K2CO3 or NaHCO, for oxidation of primary and secondary alcohols to carbonyl compounds. Allylic alcohols are oxidized in 75-95% yield at room temperature, a-Glycols are cleaved readily in good yield. [Pg.474]

Selenoxide elimination is now widely used for the synthesis of a,p-unsaturated carbonyl compounds, allyl alcohols and terminal alkenes since it proceeds under milder conditions than those required for sulfoxide or any of the other eliminations discussed in this chapter. The selenoxides are usually generated by oxidation of the parent selenide using hydrogen peroxide, sodium periodide, a peroxy acid or ozone, and are not usually isolated, the selenoxide fragmenting in situ. The other product of the elimination, the selenenic acid, needs to be removed from the reaction mixture as efficiently as possible. It can disproportionate with any remaining selenoxide to form the conesponding selenide and seleninic acid, or undergo electrophilic addition to the alkene to form a -hydroxy selenide, as shown in... [Pg.1026]

Carbonyl compounds. Allylic alcohols are oxidized under ethylene with Pd(OAc)2 as catalyst. A more conventional hydrogen acceptor is molecular oxygen in such oxidation. Under such conditions, cyclobutanols that are gem-vinylated or arylated are cleaved (further transformations are also possible). ... [Pg.317]

NR ss not reactive toward hydrocarbons SE - stereoselective epoxidation E = epoxidation HA = hydroxylation of alkanes OA = oxidation of alcohols to carbonyl compounds PO oxidation of phosphines to phosphine oxides OC = oxidative cleavage of alkenes K = ketonization of alkenes DO = hydroxylation of alkenes to diols AO allylic oxidation of alkenes. [Pg.6496]

Carbonyl Compounds by Oxidation of Alcohols and Aldehydes. Salts of palladium, in particular PdCl2 in the presence of a base, catalyze the CCI4 oxidation of alcohols to aldehydes and ketones. Allylic alcohols carrying a terminal double bond are transformed to 4,4,4-trichloro ketones at 110 °C, but yield halo-hydrins at 40 °C. These can be transformed to the corresponding trichloro ketones under catalysis of palladium acetate (eq 56). The latter transformation could be useful for the formation of ketones from internal alkenes provided the halohydrin formation is regioselective. [Pg.465]

Selenium dioxide is a very useful reagent for allylic oxidation of alkenes. The products are either carbonyl compounds, allylic alcohols, or allylic esters, depending on the reaction conditions. The basic mechanism consists of three essential steps (a) an electrophilic ene reaction with Se02, (b) a sigmatropic rearrangement which restores the original location of the double bond, and (c) breakdown of the resulting selenium ester ... [Pg.659]

Dimethyl sulfoxide reacts with trifluoroacetic anhydride at low tempera ture to give a complex that is an efficient reagent for the oxidation of alcohols to carbonyl compounds [40 41] This reagent can be used to oxidize primary and secondary aliphatic alcohols, cycloalkyl alcohols, and allylic, homoallylic, ben-zylic, acetylenic, and steroidal alcohols (equation 19)... [Pg.948]

Allyl anion synthons A and C, bearing one or two electronegative hetero-substituents in the y-position are widely used for the combination of the homoenolate (or / -enolate) moiety B or D with carbonyl compounds by means of allylmetal reagents 1 or 4, since hydrolysis of the addition products 2 or 5 leads to 4-hydroxy-substituted aldehydes or ketones 3, or carboxylic acids, respectively. At present, 1-hetero-substituted allylmetal reagents of type 1, rather than 4, offer the widest opportunity for the variation of the substitution pattern and for the control of the different levels of stereoselectivity. The resulting aldehydes of type 3 (R1 = H) are easily oxidized to form carboxylic acids 6 (or their derivatives). [Pg.226]

Addition of Metalated Allylic Phosphine Oxides, Phosphonates, Sulfones, and Sulfoxides and Sulfoximines to a,/i-l nsaturated Carbonyl Compounds... [Pg.918]

Dipyridiue-chromium(VI) oxide2 was introduced as an oxidant for the conversion of acid-sensitive alcohols to carbonyl compounds by Poos, Arth, Beyler, and Sarett.3 The complex, dispersed in pyridine, smoothly converts secondary alcohols to ketones, but oxidations of primary alcohols to aldehydes are capricious.4 In 1968, Collins, Hess, and Frank found that anhydrous dipyridine-chromium(VI) oxide is moderately soluble in chlorinated hydrocarbons and chose dichloro-methane as the solvent.5 By this modification, primary and secondary alcohols were oxidized to aldehydes and ketones in yields of 87-98%. Subsequently Dauben, Lorber, and Fullerton showed that dichloro-methane solutions of the complex are also useful for accomplishing allylic oxidations.6... [Pg.85]

The allylic alcohols that are the initial oxidation products can be further oxidized to carbonyl groups by Se02 and the conjugated carbonyl compound is usually isolated. If the alcohol is the desired product, the oxidation can be run in acetic acid, in which case acetate esters are formed. [Pg.1124]

Nickel(O) complexes are extremely effective for the dimerization and oligomerization of conjugated dienes [8,9]. Two molecules of 1,3-butadiene readily undergo oxidative cyclization with a Ni(0) metal to form bis-allylnickel species. Palladium(O) complexes also form bis-allylpalladium species of structural similarity (Scheme 2). The bis-allylpalladium complexes show amphiphilic reactivity and serve as an allyl cation equivalent in the presence of appropriate nucleophiles, and also serve as an allyl anion equivalent in the presence of appropriate electrophiles. Characteristically, the bis-allylnickel species is known to date only as a nucleophile toward carbonyl compounds (Eq. 1) [10,11],... [Pg.183]

The development of the Grignard-type addition to carbonyl compounds mediated by transition metals would be of interest as the compatibility with a variety of functionality would be expected under the reaction conditions employed. One example has been reported on the addition of allyl halides to aldehydes in the presence of cobalt or nickel metal however, yields were low (up to 22%). Benzylic nickel halides prepared in situ by the oxidative addition of benzyl halides to metallic nickel were found to add to benzil and give the corresponding 3-hydroxyketones in high yields(46). The reaction appears to be quite general and will tolerate a wide range of functionality. [Pg.233]

The ring-opening of the cyclopropane nitrosourea 233 with silver trifiate followed by stereospecific [4 + 2] cycloaddition yields 234 [129]. (Scheme 93) Oxovanadium(V) compounds, VO(OR)X2, are revealed to be Lewis acids with one-electron oxidation capability. These properties permit versatile oxidative transformations of carbonyl and organosilicon compounds as exemplified by ring-opening oxygenation of cyclic ketones [130], dehydrogenative aroma-tization of 2-eyclohexen-l-ones [131], allylic oxidation of oc,/ -unsaturated carbonyl compounds [132], decarboxylative oxidation of a-amino acids [133], oxidative desilylation of silyl enol ethers [134], allylic silanes, and benzylic silanes [135]. [Pg.146]

The isomerization of allylic alcohols provides an enol (or enolate) intermediate, which tautomerizes to afford the saturated carbonyl compound (Equation (8)). The isomerization of allylic alcohols to saturated carbonyl compounds is a useful synthetic process with high atom economy, which eliminates conventional two-step sequential oxidation and reduction.25,26 A catalytic one-step transformation, which is equivalent to an internal reduction/oxidation process, is a conceptually attractive strategy due to easy access to allylic alcohols.27-29 A variety of transition metal complexes have been employed for the isomerization of allylic alcohols, as shown below. [Pg.76]

Since nucleophilic addition to a metal-coordinated alkene generates a cr-metal species bonded to an -hybridized carbon, facile 3-H elimination may then ensue. An important example of pertinence to this mechanism is the Wacker reaction, in which alkenes are converted into carbonyl compounds by the oxidative addition of water (Equation (108)), typically in the presence of a Pd(n) catalyst and a stoichiometric reoxidant.399 When an alcohol is employed as the nucleophile instead, the reaction produces a vinyl or allylic ether as the product, thus accomplishing an etherification process. [Pg.679]

Ishii and co-workers [109] reported the aerobic oxidation of various organic compounds catalyzed by (NH4)5H6[PV8Mo4O40] supported on active carbon. The catalyst showed high activity for oxidative dehydrogenation of various benzylic and allylic alcohols to give the corresponding carbonyl compounds in moderate to high yields. The catalyst can be recycled without loss of activity for the... [Pg.476]

The mechanism of the Zn chloride-assisted, palladium-catalyzed reaction of allyl acetate (456) with carbonyl compounds (457) has been proposed [434]. The reaction involves electroreduction of a Pd(II) complex to a Pd(0) complex, oxidative addition of the allyl acetate to the Pd(0) complex, and Zn(II)/Pd(II) transmetallation leading to an allylzinc reagent, which would react with (457) to give homoallyl alcohols (458) and (459) (Scheme 157). Substituted -lactones are electrosynthesized by the Reformatsky reaction of ketones and ethyl a-bromobutyrate, using a sacrificial Zn anode in 35 92% yield [542]. The effect of cathode materials involving Zn, C, Pt, Ni, and so on, has been investigated for the electrochemical allylation of acetone [543]. [Pg.583]

Allyltin difluoroiodide, formed in situ by the oxidative addition of stannous fluoride to allyl iodide, is found to react with carbonyl compounds to give the corresponding homoallylic alcohols in excellent yields under mild reaction conditions (9). [Pg.281]


See other pages where Carbonyl compounds allylic oxidation is mentioned: [Pg.209]    [Pg.86]    [Pg.415]    [Pg.1026]    [Pg.31]    [Pg.119]    [Pg.122]    [Pg.364]    [Pg.434]    [Pg.17]    [Pg.486]    [Pg.73]    [Pg.323]    [Pg.748]    [Pg.1169]    [Pg.130]    [Pg.221]    [Pg.366]    [Pg.453]    [Pg.452]    [Pg.107]    [Pg.6]   
See also in sourсe #XX -- [ Pg.99 ]

See also in sourсe #XX -- [ Pg.99 ]

See also in sourсe #XX -- [ Pg.99 ]




SEARCH



Allyl compounds

Allyl oxide

Allylations carbonyl compounds

Allylic compounds

Allylic compounds carbonylation

Allylic compounds oxidation

Allylic oxidation

Carbonyl allylation

Carbonyl compounds allylation

Carbonyl oxidation

Carbonyl oxide

Carbonylation oxide

Oxidation carbonylative

Oxidation oxidative carbonylation

Oxidative carbonylation

Oxidative carbonylations

© 2024 chempedia.info