Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon valence electrons

The degree of shielding of the proton by the carbon valence electrons depends on the character of the substituent atoms and groups present, and particularly on their electron-attracting power, or electronegativity. For a grouping of the... [Pg.307]

The product of a elimination is a neutral species that resembles a carbocation in having only six carbon valence electrons. The simplest carbene is CH2, methylene. Carbenes are highly reactive, so much so that they cannot be isolated. Their involvement in reactions usually has to be inferred from the nature of the products or the reaction kinetics. The characteristic carbene reactions involve forming an electron-pair bond to the carbene carbon by reacting with cr bonds, it bonds, or unshared pairs ( ), Some of these reactions are illustrated here for methylene ( CH2). ... [Pg.564]

The purpose of this formulation is to obtain an anti-symmetric wave function for the four carbon valence electrons. The determinant, and hence the total wave function, changes sign with the interchange of any two electrons, as required. However, each of the individual product states, such as s )p (2)py( )p A), is symmetrical and hence forbidden i.e. nonexistent. The prescription would be valid in a classical environment, albeit with obscure meaning. [Pg.460]

Correlations have been found between certain absorption patterns in the infrared and the concentrations of aromatic and paraffinic carbons given by the ndA/method (see article 3.1.3.). The absorptions at 1600 cm due to vibrations of valence electrons in carbon-carbon bonds in aromatic rings and at 720 cm (see the spectrum in Figure 3.8) due to paraffinic chain deformations are directly related to the aromatic and paraffinic carbon concentrations, respectively. )... [Pg.60]

Figure Al.3.22. Spatial distributions or charge densities for carbon and silicon crystals in the diamond structure. The density is only for the valence electrons the core electrons are omitted. This charge density is from an ab initio pseudopotential calculation [27]. Figure Al.3.22. Spatial distributions or charge densities for carbon and silicon crystals in the diamond structure. The density is only for the valence electrons the core electrons are omitted. This charge density is from an ab initio pseudopotential calculation [27].
This term is also called the row/coltimn sum (see Figure 2-19). In the example, carbon atom 2 has 1 + 2 -t- 1 = 4 valence electrons. [Pg.38]

Valence electron density for the diamond structures of carbon and silicon. (Figure redrawn from Cohen M L i. Predicting New Solids and Superconductors. Science 234 549-553.)... [Pg.178]

Trivalent ( classical carbenium ions contain an sp -hybridized electron-deficient carbon atom, which tends to be planar in the absence of constraining skeletal rigidity or steric interference. The carbenium carbon contains six valence electrons thus it is highly electron deficient. The structure of trivalent carbocations can always be adequately described by using only two-electron two-center bonds (Lewis valence bond structures). CH3 is the parent for trivalent ions. [Pg.147]

How many valence electrons does carbon have ... [Pg.9]

All four sp orbitals are of equal energy Therefore according to Hund s rule (Sec tion 1 1) the four valence electrons of carbon are distributed equally among them making four half filled orbitals available for bonding... [Pg.64]

FIGURE 2 8 sp Hybridization (a) Electron configuration of carbon in its most stable state (b) Mixing the s orbital with the three p orbitals generates four sp hybrid orbitals The four sp hybrid orbitals are of equal energy therefore the four valence electrons are distributed evenly among them The axes of the four sp orbitals are directed toward the corners of a tetrahedron... [Pg.65]

A neutral carbon atom has four valence electrons Five electrons are assigned to the CH2OH carbon therefore it has an oxidation number of -1 Seven electrons are assigned to the CH3 carbon therefore it has an oxidation number of-3 As expected this method gives an oxidation number of -2 for oxygen and +1 for each hydrogen... [Pg.89]

The properties of tert butyl cation can be understood by focusing on its structure which IS shown m Figure 4 9 With only six valence electrons which are distributed among three coplanar ct bonds the positively charged carbon is sp hybridized The unhybridized 2p orbital that remains on the positively charged carbon contains no elec Irons Its axis is perpendicular to the plane of the bonds connecting that carbon to the three methyl groups... [Pg.156]

With an atomic number of 28 nickel has the electron conflguration [Ar]4s 3c (ten valence electrons) The 18 electron rule is satisfied by adding to these ten the eight elec Irons from four carbon monoxide ligands A useful point to remember about the 18 electron rule when we discuss some reactions of transition metal complexes is that if the number is less than 18 the metal is considered coordinatively unsaturated and can accept additional ligands... [Pg.608]

In the sodium atom pairs of 3/2 states result from the promotion of the 3s valence electron to any np orbital with n > 2. It is convenient to label the states with this value of n, as n P 1/2 and n f 3/2, the n label being helpful for states that arise when only one electron is promoted and the unpromoted electrons are either in filled orbitals or in an x orbital. The n label can be used, therefore, for hydrogen, the alkali metals, helium and the alkaline earths. In other atoms it is usual to precede the state symbols by the configuration of the electrons in unfilled orbitals, as in the 2p3p state of carbon. [Pg.215]

The chemical shift is related to the part of the electron density contributed by the valence electrons, ft is a natural extension, therefore, to try to relate changes of chemical shift due to neighbouring atoms to the electronegativities of those atoms. A good illustration of this is provided by the X-ray photoelectron carbon Is spectmm of ethyltrifluoroacetate, CF3COOCH2CH3, in Figure 8.14, obtained with AlXa ionizing radiation which was narrowed with a monochromator. [Pg.310]

Temperature The level of the temperature measurement (4 K, 20 K, 77 K, or higher) is the first issue to be considered. The second issue is the range needed (e.g., a few degrees around 90 K or 1 to 400 K). If the temperature level is that of air separation or liquefact-ing of natural gas (LNG), then the favorite choice is the platinum resistance thermometer (PRT). Platinum, as with all pure metals, has an electrical resistance that goes to zero as the absolute temperature decreases to zero. Accordingly, the lower useful limit of platinum is about 20 K, or liquid hydrogen temperatures. Below 20 K, semiconductor thermometers (germanium-, carbon-, or silicon-based) are preferred. Semiconductors have just the opposite resistance-temperature dependence of metals—their resistance increases as the temperature is lowered, as fewer valence electrons can be promoted into the conduction band at lower temperatures. Thus, semiconductors are usually chosen for temperatures from about 1 to 20 K. [Pg.1136]

A second type of hybridisation of the valence electrons in the carbon atom can occur to form three 2sp hybrid orbitals leaving one unhybridised 2p orbital. [Pg.1]

In the third type of hybridisation of the valence electrons of carbon, two linear 2sp orbitals are formed leaving two unhybridised 2p orbitals. Linear a bonds are formed by overlap of the sp hybrid orbitals with orbitals of neighbouring atoms, as in the molecule ethyne (acetylene) C2H2, Fig. 1, A3. The unhybridised p orbitals of the carbon atoms overlap to form two n bonds the bonds formed between two C atoms in this way are represented as Csp Csp, or simply as C C. [Pg.2]


See other pages where Carbon valence electrons is mentioned: [Pg.1679]    [Pg.7]    [Pg.930]    [Pg.942]    [Pg.23]    [Pg.16]    [Pg.70]    [Pg.799]    [Pg.639]    [Pg.1679]    [Pg.7]    [Pg.930]    [Pg.942]    [Pg.23]    [Pg.16]    [Pg.70]    [Pg.799]    [Pg.639]    [Pg.56]    [Pg.67]    [Pg.92]    [Pg.156]    [Pg.221]    [Pg.1144]    [Pg.149]    [Pg.155]    [Pg.31]    [Pg.13]    [Pg.14]    [Pg.412]    [Pg.606]    [Pg.917]    [Pg.1278]    [Pg.472]    [Pg.50]    [Pg.40]    [Pg.27]    [Pg.37]    [Pg.663]    [Pg.125]   
See also in sourсe #XX -- [ Pg.59 , Pg.60 ]

See also in sourсe #XX -- [ Pg.22 ]

See also in sourсe #XX -- [ Pg.32 ]




SEARCH



Carbon atom valence electrons

Carbon dioxide valence shell electron pair

Carbon electrons

Carbon valence

Carbon valence electron density

Carbon valency

Valence electron

Valence electrons Valency

Valence electrons of carbon

© 2024 chempedia.info