Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heck reaction mechanisms

Sengupta showed that the reaction of bis-arenediazonium salt 91 with vinyl(triethoxy)silane 92 afforded poly(phenylene-vinylene) 93. Although the reaction apparently proceeds through the Heck reaction mechanism, which is described in Section 11.19.4, a part of the step-growth reaction is indeed a transformation of the carbon-silicon bond of 92 to the carbon-carbon bond (Equation (44)). [Pg.669]

Sundermann, A., Uzan, O., Martin, J. M. L. Computational study of a new Heck reaction mechanism catalyzed by palladium(ll/IV) species. [Pg.597]

The most common Mizoroki-Heck reaction mechanism is called the neutral mechanism, because its intermediates are uncharged. The catalytic cycle for the neutral manifold of the intramolecular Mizoroki-Heck reaction of alkenyl and aryl halides is shown in Scheme... [Pg.435]

Scheme 12.10 Intramolecular Mizoroki-Heck reaction mechanism of enantioenriched o-iodoanilides. Scheme 12.10 Intramolecular Mizoroki-Heck reaction mechanism of enantioenriched o-iodoanilides.
Mechanism ofLP Oxo Rea.ction. The LP Oxo reaction proceeds through a number of rhodium complex equilibria analogous to those ia the Heck-Breslow mechanism described for the ligand-free cobalt process (see Fig. 1). [Pg.468]

The original Sonogashira reaction uses copper(l) iodide as a co-catalyst, which converts the alkyne in situ into a copper acetylide. In a subsequent transmeta-lation reaction, the copper is replaced by the palladium complex. The reaction mechanism, with respect to the catalytic cycle, largely corresponds to the Heck reaction.Besides the usual aryl and vinyl halides, i.e. bromides and iodides, trifluoromethanesulfonates (triflates) may be employed. The Sonogashira reaction is well-suited for the synthesis of unsymmetrical bis-2xy ethynes, e.g. 23, which can be prepared as outlined in the following scheme, in a one-pot reaction by applying the so-called sila-Sonogashira reaction ... [Pg.158]

Palladium(II) complexes provide convenient access into this class of catalysts. Some examples of complexes which have been found to be successful catalysts are shown in Scheme 11. They were able to get reasonable turnover numbers in the Heck reaction of aryl bromides and even aryl chlorides [22,190-195]. Mechanistic studies concentrated on the Heck reaction [195] or separated steps like the oxidative addition and reductive elimination [196-199]. Computational studies by DFT calculations indicated that the mechanism for NHC complexes is most likely the same as that for phosphine ligands [169], but also in this case there is a need for more data before a definitive answer can be given on the mechanism. [Pg.15]

The Mizoroki-Heck reaction is a metal catalysed transformation that involves the reaction of a non-functionalised olefin with an aryl or alkenyl group to yield a more substituted aUcene [11,12]. The reaction mechanism is described as a sequence of oxidative addition of the catalytic active species to an aryl halide, coordination of the alkene and migratory insertion, P-hydride elimination, and final reductive elimination of the hydride, facilitated by a base, to regenerate the active species and complete the catalytic cycle (Scheme 6.5). [Pg.160]

As mentioned in the discussion of the reaction mechanism for this transformation, the active species is a dicoordinate Pd(0) complex, and it is unclear whether an associative or a dissociative process is operative for oxidative addition. In this context, different NHC complexes containing only one carbene ligand have been tested in the Mizoroki-Heck reaction. The most successful are those prepared by Beller, which were able to perform the Mizoroki-Heck reaction of non-activated aryl chlorides with moderate to good yields in ionic liquids (Scheme 6.13). The same compounds have also been applied to the Mizoroki-Heck reaction of aryldiazonium... [Pg.165]

Scheme 7.13 Proposed mechanism of the oxidative Heck reaction with as oxidising agent... Scheme 7.13 Proposed mechanism of the oxidative Heck reaction with as oxidising agent...
Herrmann WA, Brossmer C, Reisinger CP, Riermaier T, Ofele K, Beller M (1997) Coordination chemistry and mechanisms of metal-catalyzed C-C coupling reactions. Part 10. Palladacycles efficient new catalysts for the Heck vinylation of aryl halides. Chem Eur J 3 1357-1364 Iyer S, Jayanthi A (2001) Acetylferrocenyloxime palladacycle-catalyzed Heck reactions. Tetrahedron Lett 42 7877-7878 Iyer S, Ramesh C (2000) Aryl-Pd covalently bonded palladacycles, novel amino and oxime catalysts di- x-chlorobis(benzaldehydeoxime-6-C,AT)dipalla-dium(II), di- x-chlorobis(dimethylbenzylamine-6-C,A)dipalladium(II) for the Heck reaction. Tetrahedron Lett 41 8981-8984 Jeffery T (1984) Palladium-catalysed vinylation of organic halides under solid-liquid phase transfer conditions. J Chem Soc Chem Commun 1287-1289 (b) idem,... [Pg.97]

The Heck reaction, first disclosed by the Mori and Heck groups in the early 1970s [65, 66], is the Pd-catalyzed coupling reaction of organohalides (or triflates) with olefins. Nowadays, it has become an indispensable tool for organic chemists. Inevitably, many applications to heterocyclic chemistry have been pursued and successfully executed. In one case, Ohta et al. reacted 2-chloro-3,6-dimethylpyrazine (49) with styrene to furnish ( )-2,5-dimethyl-3-styrylpyrazine (50) [67]. Here, only the E isomer was observed. The outcome will become apparent during the ensuing discussions on the mechanism. [Pg.14]

The intermolecular Heck reaction of halopyridines provides an alternative route to functionalized pyridines, circumventing the functional group compatibility problems encountered in other methods. 3-Bromopyridine has often been used as a substrate for the Heck reaction [124-126]. For example, ketone 155 was obtained from the Heck reaction of 3-bromo-2-methoxy-5-chloropyridine (153) with allylic alcohol 154 [125]. The mechanism for such a synthetically useful coupling warrants additional comments oxidative addition of 3-bromopyridine 153 to Pd(0) proceeds as usual to give the palladium intermediate 156. Subsequent insertion of allylic alcohol 154 to 156 gives intermediate 157. Reductive elimination of 157 gives enol 158, which then isomerizes to afford ketone 155 as the ultimate product This tactic is frequently used in the synthesis of ketones from allylic alcohols. [Pg.213]

Figure 2 shows the generally accepted dissociative mechanism for rhodium hydroformylation as proposed by Wilkinson [2], a modification of Heck and Breslow s reaction mechanism for the cobalt-catalyzed reaction [3]. With this mechanism, the selectivity for the linear or branched product is determined in the alkene-insertion step, provided that this is irreversible. Therefore, the alkene complex can lead either to linear or to branched Rh-alkyl complexes, which, in the subsequent catalytic steps, generate linear and branched aldehydes, respectively. [Pg.162]

In fact, a mechanism for this reaction can be drawn that does not involve Pd at all, but let s assume that Pd is required for it to proceed. Cl- must be nucleophilic. It can add to Cl of the alkyne if the alkyne is activated by coordination to Pd(II). (Compare Hg-catalyzed addition of water to alkynes.) Addition of Cl- to an alkyne-Pd(II) complex gives a o-bound Pd(II) complex. Coordination and insertion of acrolein into the C2-Pd bond gives a new a-bound Pd(II) complex. In the Heck reaction, this complex would undergo P-hydride elimination, but in this case the Pd enolate simply is protonated to give the enol of the saturated aldehyde. [Pg.177]

Figure 13.17. Mechanism of the Heck reaction for bulky ligand systems [15]... Figure 13.17. Mechanism of the Heck reaction for bulky ligand systems [15]...
Double Heck reaction, 42 494 Double layer interface, 30 223-225 Double nucleophilic displacement, capped cyclodextrin, 32 437 Double-pulse method, 38 31 Double recognition models, 32 451 52 Doublet mechanisms, 30 43, 45, 47 Drago parameters, 38 212 Drougard-Decrooq equation, 30 345, 356, 371 Dry evaporation, perovskite preparation, 36 246-247... [Pg.93]

Studies regarding the nature of the catalytically active species for NHC complexes in Heck-type reactions have focused on the Mizorvki—Heck reaction and have consistently revealed a palladium(O) species as the active catalyst. The induction period is shortened upon addition of a reducing agent,and postulated intermediates of the reaction were isolated and characterized as well as employed in stoichiometric and catalytic reactions. Theoretical studies using DPT calculations showed the mechanism for NHC complexes to most likely he in agreement with phosphine chemistry. ... [Pg.47]

As Scheme 23 illustrates, DMF reacts with POCI3 to form Vilsmeier reagent 158. Aryl-Pd-I species 159, generated by the oxidative addition of iodotoluene 160 to Pd(0) species, reacts with the reagent 158 to yield chloroiminium ion 162 via an adduct 161 through a hetero-Heck-type reaction mechanism, and liberates H-Pd-I species. Finally, the hydrolysis of chloroiminium ion 162 gives amide 163. [Pg.530]

Another variant of the Heck reaction which is important in heterocyclic chemistry utilizes five membered heterocycles as olefin equivalent (2.2.)7 It is not clear whether the process, coined as heteroaryl Heck reaction follows the Heck mechanism (i. e. carbopalladation of the aromatic ring followed by //-elimination) or goes via a different route (e.g. electrophilic substitution by the palladium complex or oxidative addition into the C-H bond). Irrespective of these mechanistic uncertainties the reaction is of great synthetic value and is frequently used in the preparation of complex policyclic structures. [Pg.22]

In 1961 Heck and Breslow presented a multistep reaction pathway to interpret basic observations in the cobalt-catalyzed hydroformylation.28 Later modifications and refinements aimed at including alternative routes and interpreting side reactions.6 Although not all the fine details of hydroformylation are equally well understood, the Heck-Breslow mechanism is still the generally accepted basic mechanism of hydroformylation.6,17,19,29 Whereas differences in mechanisms using different metal catalysts do exist,30 all basic steps are essentially the same in the phosphine-modified cobalt- and rhodium-catalyzed transformations as well. [Pg.372]


See other pages where Heck reaction mechanisms is mentioned: [Pg.47]    [Pg.375]    [Pg.47]    [Pg.375]    [Pg.154]    [Pg.161]    [Pg.202]    [Pg.716]    [Pg.716]    [Pg.732]    [Pg.333]    [Pg.147]    [Pg.55]    [Pg.450]    [Pg.162]    [Pg.504]    [Pg.316]    [Pg.396]    [Pg.282]    [Pg.323]    [Pg.205]    [Pg.38]    [Pg.154]    [Pg.158]    [Pg.21]   
See also in sourсe #XX -- [ Pg.716 ]

See also in sourсe #XX -- [ Pg.15 ]

See also in sourсe #XX -- [ Pg.1011 ]

See also in sourсe #XX -- [ Pg.894 ]

See also in sourсe #XX -- [ Pg.317 , Pg.765 ]

See also in sourсe #XX -- [ Pg.99 , Pg.100 ]

See also in sourсe #XX -- [ Pg.43 ]

See also in sourсe #XX -- [ Pg.892 ]

See also in sourсe #XX -- [ Pg.1025 , Pg.1026 , Pg.1027 , Pg.1028 ]

See also in sourсe #XX -- [ Pg.1123 , Pg.1124 ]

See also in sourсe #XX -- [ Pg.20 , Pg.484 ]

See also in sourсe #XX -- [ Pg.562 ]




SEARCH



Asymmetric Heck reaction mechanism

Heck mechanism

Heck reaction Shaw mechanism

Heck reaction mechanism/catalytic cycle

Heck reaction neutral mechanism

Heck reaction, palladium chemistry mechanisms

Mizoroki-Heck reaction mechanism

Scope, Mechanism, and Other Fundamental Aspects of the Intermolecular Heck Reaction

© 2024 chempedia.info