Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon radical bonding

Step 2 An alkoxy radical adds to the carbon-carbon double bond... [Pg.268]

The mechanism of free radical polymerization of ethylene is outlined m Figure 6 17 Dissociation of a peroxide initiates the process m step 1 The resulting per oxy radical adds to the carbon-carbon double bond m step 2 giving a new radical which then adds to a second molecule of ethylene m step 3 The carbon-carbon bond forming process m step 3 can be repeated thousands of times to give long carbon chains... [Pg.268]

It might be noted that most (not all) alkenes are polymerizable by the chain mechanism involving free-radical intermediates, whereas the carbonyl group is generally not polymerized by the free-radical mechanism. Carbonyl groups and some carbon-carbon double bonds are polymerized by ionic mechanisms. Monomers display far more specificity where the ionic mechanism is involved than with the free-radical mechanism. For example, acrylamide will polymerize through an anionic intermediate but not a cationic one, A -vinyl pyrrolidones by cationic but not anionic intermediates, and halogenated olefins by neither ionic species. In all of these cases free-radical polymerization is possible. [Pg.349]

Like most other engineering thermoplastics, acetal resins are susceptible to photooxidation by oxidative radical chain reactions. Carbon—hydrogen bonds in the methylene groups are principal sites for initial attack. Photooxidative degradation is typically first manifested as chalking on the surfaces of parts. [Pg.57]

Most chlorofluorocarbons are hydrolytically stable, CCI2F2 being considerably more stable than either CCl F or CHCI2F. Chlorofluoromethanes and ethanes disproportionate in the presence of aluminum chloride. For example, CCl F and CCI2F2 give CCIF and CCl CHCIF2 disproportionates to CHF and CHCl. The carbon—chlorine bond in most chlorofluorocarbons can be homolyticaHy cleaved under photolytic conditions (185—225 nm) to give chlorine radicals. This photochemical decomposition is the basis of the prediction that chlorofluorocarbons that reach the upper atmosphere deplete the earth s ozone shield. [Pg.285]

Replacement of Labile Chlorines. When PVC is manufactured, competing reactions to the normal head-to-tail free-radical polymerization can sometimes take place. These side reactions are few ia number yet their presence ia the finished resin can be devastating. These abnormal stmctures have weakened carbon—chlorine bonds and are more susceptible to certain displacement reactions than are the normal PVC carbon—chlorine bonds. Carboxylate and mercaptide salts of certain metals, particularly organotin, zinc, cadmium, and antimony, attack these labile chlorine sites and replace them with a more thermally stable C—O or C—S bound ligand. These electrophilic metal centers can readily coordinate with the electronegative polarized chlorine atoms found at sites similar to stmctures (3—6). [Pg.546]

Radicals are employed widely in the polymer industry, where their chain-propagating behavior transforms vinyl monomers into polymers and copolymers. The mechanism of addition polymeri2ation involves all three types of reactions discussed above, ie, initiation, propagation by addition to carbon—carbon double bonds, and termination ... [Pg.219]

A20 initiators decompose thermally by cleavage of the two carbon—nitrogen bonds, either stepwise or simultaneously, to form two alkyl radicals and a nitrogen molecule ... [Pg.229]

Photoinitiation. Since photolysis of polysdanes generates sdyl radicals, which can add to carbon—carbon double bonds, these polymers have been used for the free-radical polymerization of unsaturated organic monomers (135,136). Though about one-tenth as efficient as other organic photoinitiators, polysdanes are nevertheless quite insensitive to oxygen effects, which somewhat compensates for their lower efficiency. [Pg.263]

The general reactivity of higher a-olefins is similar to that observed for the lower olefins. However, heavier a-olefins have low solubihty in polar solvents such as water consequentiy, in reaction systems requiting the addition of polar reagents, apparent reactivity and degree of conversion maybe adversely affected. Reactions of a-olefins typically involve the carbon—carbon double bond and can be grouped into two classes (/) electrophilic or free-radical additions and (2) substitution reactions. [Pg.436]

The reaction rate of molecular oxygen with alkyl radicals to form peroxy radicals (eq. 5) is much higher than the reaction rate of peroxy radicals with a hydrogen atom of the substrate (eq. 6). The rate of the latter depends on the dissociation energies (Table 1) and the steric accessibiUty of the various carbon—hydrogen bonds it is an important factor in determining oxidative stabiUty. [Pg.223]

The electron-rich carbon—carbon double bond reacts with reagents that are deficient in electrons, eg, with electrophilic reagents in electrophilic addition (6,7), free radicals in free-radical addition (8,9), and under acidic conditions with another butylene (cation) in dimerization. [Pg.363]

The converse situation in which ring closure is initiated by the attack of a carbon-based radical on the heteroatom has been employed only infrequently (Scheme 18c) (66JA4096). The example in Scheme 18d begins with an intramolecular carbene attack on sulfur followed by rearrangement (75BCJ1490). The formation of pyrrolidines by intramolecular attack of an amino radical on a carbon-carbon double bond is exemplified in Scheme 19. In the third example, where cyclization is catalyzed by a metal ion (Ti, Cu, Fe, Co " ), the stereospecificity of the reaction depends upon the choice of metal ion. [Pg.100]

The important hydrocarbon classes are alkanes, alkenes, aromatics, and oxygenates. The first three classes are generally released to the atmosphere, whereas the fourth class, the oxygenates, is generally formed in the atmosphere. Propene will be used to illustrate the types of reactions that take place with alkenes. Propene reactions are initiated by a chemical reaction of OH or O3 with the carbon-carbon double bond. The chemical steps that follow result in the formation of free radicals of several different types which can undergo reaction with O2, NO, SO2, and NO2 to promote the formation of photochemical smog products. [Pg.174]

The chemical structure of SBR is given in Fig. 4. Because butadiene has two carbon-carbon double bonds, 1,2 and 1,4 addition reactions can be produced. The 1,2 addition provides a pendant vinyl group on the copolymer chain, leading to an increase in Tg. The 1,4 addition may occur in cis or trans. In free radical emulsion polymerization, the cis to trans ratio can be varied by changing the temperature (at low temperature, the trans form is favoured), and about 20% of the vinyl pendant group remains in both isomers. In solution polymerization the pendant vinyl group can be varied from 10 to 90% by choosing the adequate solvent and catalyst system. [Pg.586]

Free radicals are initially generated whenever polymer chains are broken and carbon radicals are formed. These effects occur during manufacture and in service life. Many elastomers are observed to oxidize at relatively low temperature (about 60°C), where carbon-hydrogen and carbon-carbon bond cleavages are highly unlikely. It has been demonstrated [52] that traces of peroxides impurities in the rubber cause low-temperature oxidation of rubber. These initiating peroxides are present in even the most carefully prepared raw rubber polymer [53]. [Pg.641]

In most cases the carbon radical formed in the hydrogen abstraction step 2 will react with the radical R formed in the homolysis of the X—R bond. However, a cage reaction does not seem to be involved in this step. This has been established in the nitrite photolysis and probably applies to hypohalites as well. In the lead tetraacetate reaction, the steps following the oxyradical formation leading to tetrahydrofuran derivatives are less clear. [Pg.240]

In some cases iinsaturated groups (carbon-carbon double bonds, carbonyl groups or nitriles) in close proximity to the carbon radical interact and give rise to abnormal products. Details will be discussed in the following sections. [Pg.240]

The homolysis of tertiary hypochlorites for the production of oxy radicals is well known." The ease with which secondary hypohalites decompose to ketones has hampered the application of hypohalites for transannular reactions. However the tendency for the base-catalyzed heterolytic decomposition decreases as one passes from hypochlorites to hypobromites tohypoidites. Therefore the suitability of hypohalites for functionalization at the angular positions in steroids should increase in the same order. Since hypoidites (or iodine) do not react readily with ketones or carbon-carbon double bonds under neutral conditions hypoiodite reactions are more generally applicable than hypochlorite or hypobromite decompositions. [Pg.246]

The addition of halogenated aliphatics to carbon-carbon double bonds is the most useful type of carbon-carbon bond forming synthetic method for highly halogenated substrates Numerous synthetic procedures have been developed for these types of reactions, particularly for the addition of perfluoroalkyl iodides to alkenes using thermal or photolytic initiators of free radical reactions such as organic peroxides and azo compounds [/]... [Pg.747]

Dialkylphosphinous acids react with perfiuoroalkenes under free radical conditions to form carbon-phosphorus bonds [10] (equation 7)... [Pg.753]


See other pages where Carbon radical bonding is mentioned: [Pg.430]    [Pg.430]    [Pg.352]    [Pg.271]    [Pg.313]    [Pg.319]    [Pg.181]    [Pg.269]    [Pg.289]    [Pg.219]    [Pg.220]    [Pg.221]    [Pg.101]    [Pg.105]    [Pg.105]    [Pg.443]    [Pg.543]    [Pg.150]    [Pg.22]    [Pg.148]    [Pg.131]    [Pg.495]    [Pg.253]    [Pg.253]    [Pg.271]    [Pg.93]    [Pg.123]    [Pg.28]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Addition to Acetylenic Bonds of Carbon-Centered Radicals

Atom transfer radical polymerization carbon—halogen bond

Bond dissociation energies carbon-hydrogen radicals

Carbon radicals

Carbon-Nitrogen Multiple Bond Radical Acceptors

Carbon-centered radicals bonding

Carbon-hydrogen bonds radical reaction with

Carbon-nitrogen bonds radical additions

Carbon-oxygen bonds radical additions

Carbonate radical

Carbon—hydrogen bonds radical reactivity

Free radical additions carbon-heteroatom bonds

Radical Processes Carbon-Heteroatom Bond Formation

Radical anions carbon—sulfur bonds

Radical polymerization carbon-hydrogen bond, reaction

Radical reactions carbon-sulfur bond formation

Radicals bonding

Unusual Structures of Radical Ions in Carbon Skeletons Nonstandard Chemical Bonding by Restricting Geometries

© 2024 chempedia.info