Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complex hydrides carbon oxides

Catalysts suitable specifically for reduction of carbon-oxygen bonds are based on oxides of copper, zinc and chromium Adkins catalysts). The so-called copper chromite (which is not necessarily a stoichiometric compound) is prepared by thermal decomposition of ammonium chromate and copper nitrate [50]. Its activity and stability is improved if barium nitrate is added before the thermal decomposition [57]. Similarly prepared zinc chromite is suitable for reductions of unsaturated acids and esters to unsaturated alcohols [52]. These catalysts are used specifically for reduction of carbonyl- and carboxyl-containing compounds to alcohols. Aldehydes and ketones are reduced at 150-200° and 100-150 atm, whereas esters and acids require temperatures up to 300° and pressures up to 350 atm. Because such conditions require special equipment and because all reductions achievable with copper chromite catalysts can be accomplished by hydrides and complex hydrides the use of Adkins catalyst in the laboratory is very limited. [Pg.9]

All of the members of the final review team contributed, if not text, then comments to all of the chapters of the book. Their primary responsibilities for the different sections/chapters were divided as follows. Paul Brown prepared the introduction, and the sections on elemental zirconium, the zirconyl ion, the gaseous zirconium oxides, zirconium hydride, the halogen compounds and complexes, the chalcogen compounds and complexes, the Group 15 compounds and complexes, zirconium carbides and silicates. He was assisted by Christian Ekberg in the interpretation of aqueous zirconium complexes in these sections. Some initial work was done by Ken Jackson on the zirconium sulphate, nitrate and phosphate compounds and complexes. Bernd Grambow was responsible for the drafting of the sections on zirconium hydrolysis, the ion and the section on crystalline and amorphous zirconium oxides. Enzo Curti drafted the section on the zirconium carbonates. [Pg.519]

In the course of studying the reactions of carbon oxide with lanthanoid complexes Evans and coworkers have established that CO in benzene medium is added to the hydride [(Me5C5)2SmH]2 at room temperature and 6 atm pressure [90]. After the treatment of reaction mixture with triphenylphosphinoxide the complex [(Me5C5)2Sm-... [Pg.401]

Recently, it was shown that the attack of CN on [FeCp(C6H5Cl)]+ PFortho-position. In the intermediate cyclohexadienyl complex, the CN group migrates to the ipso-carbon, whereas Cl is displaced. The monosubstituted benzonitrile complex is subjected to a second ortho-CN- attack but hydride is not removed spontaneously to give back an arene complex (Scheme XIX). Removal of the hydride is achieved by oxidation using DDQ (2,3-dichloro-... [Pg.82]

By studying the NMR spectra of the products, Jensen and co-workers were able to establish that the alkylation of (the presumed) [Co (DMG)2py] in methanol by cyclohexene oxide and by various substituted cyclohexyl bromides and tosylates occurred primarily with inversion of configuration at carbon i.e., by an 8 2 mechanism. A small amount of a second isomer, which must have been formed by another minor pathway, was observed in one case (95). Both the alkylation of [Co (DMG)2py] by asymmetric epoxides 129, 142) and the reduction of epoxides to alcohols by cobalt cyanide complexes 105, 103) show preferential formation of one isomer. In addition, the ratio of ketone to alcohol obtained in the reaction of epoxides with [Co(CN)5H] increases with pH and this has been ascribed to differing reactions with the hydride (reduction to alcohol) and Co(I) (isomerization to ketone) 103) (see also Section VII,C). [Pg.353]

Note that the main difference between zirconium hydride and tantalum hydride is that tantalum hydride is formally a d 8-electron Ta complex. On the one hand, a direct oxidative addition of the carbon-carbon bond of ethane or other alkanes could explain the products such a type of elementary step is rare and is usually a high energy process. On the other hand, formation of tantalum alkyl intermediates via C - H bond activation, a process already ob-... [Pg.178]

Both Ni and Pd reactions are proposed to proceed via the general catalytic pathway shown in Scheme 8.1. Following the oxidative addition of a carbon-halogen bond to a coordinatively unsaturated zero valent metal centre (invariably formed in situ), displacement of the halide ligand by alkoxide and subsequent P-hydride elimination affords a Ni(II)/Pd(ll) aryl-hydride complex, which reductively eliminates the dehalogenated product and regenerates M(0)(NHC). ... [Pg.208]


See other pages where Complex hydrides carbon oxides is mentioned: [Pg.186]    [Pg.86]    [Pg.406]    [Pg.143]    [Pg.189]    [Pg.189]    [Pg.363]    [Pg.74]    [Pg.363]    [Pg.275]    [Pg.92]    [Pg.189]    [Pg.31]    [Pg.480]    [Pg.5]    [Pg.6508]    [Pg.189]    [Pg.60]    [Pg.286]    [Pg.94]    [Pg.19]    [Pg.30]    [Pg.29]    [Pg.204]    [Pg.76]    [Pg.58]    [Pg.7]    [Pg.53]    [Pg.186]    [Pg.167]    [Pg.216]    [Pg.193]   
See also in sourсe #XX -- [ Pg.4 , Pg.8 ]




SEARCH



Carbon complex

Carbon hydrides

Carbon oxides hydrides

Carbonate complexation

Carbonate) complexes

Complex carbon oxides

Hydride oxidation

Oxides complex hydrides

Oxides hydrides

© 2024 chempedia.info