Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide, tropospheric sources

Conversely, generating hydrogen from sustainable sources would reduce emissions of carbon monoxide and NOx, with a consequent fall in tropospheric ozone levels. This would improve air quality in many regions of the world. Furthermore, C02 emissions would be reduced, thereby slowing the global warming trend. [Pg.157]

On the basis of ratios of C and C present in carbon dioxide, Weinstock (250) estimated a carbon monoxide lifetime of 0.1 year. This was more than an order of magnitude less than previous estimates of Bates and Witherspoon (12) and Robinson and Robbins (214), which were based on calculations of the anthropogenic source of carbon monoxide. Weinstock (250) suggested that if a sufficient concentration of hydroxyl radical were available, the oxidation of carbon monoxide by hydroxyl radical, first proposed by Bates and Witherspoon (12) for the stratosphere, would provide the rapid loss mechanism for carbon monoxide that appeared necessary. By extension of previous stratospheric models of Hunt (104), Leovy (150), Nicolet (180), and others, Levy (152) demonstrated that a large source of hydroxyl radical, the oxidation of water by metastable atomic oxygen, which was itself produced by the photolysis of ozone, existed in the troposphere and that a chain reaction involving the hydroxyl and hydroperoxyl radicals would rapidly oxidize both carbon monoxide and methane. It was then pointed out that all the loss paths for the formaldehyde produced in the methane oxidation led to the production of carbon monoxide [McConnell, McElroy, and Wofsy (171) and Levy (153)1-Similar chain mechanisms were shown to provide tropospheric... [Pg.374]

Methane is oxidized primarily in the troposphere by reactions involving the hydroxyl radical (OH). Methane is the most abundant hydrocarbon species in the atmosphere, and its oxidation affects atmospheric levels of other important reactive species, including formaldehyde (CH2O), carbon monoxide (CO), and ozone (O3) (Wuebbles and Hayhoe, 2002). The chemistry of these reactions is well known, and the rate of atmospheric CH4 oxidation can be calculated from the temperature and concentrations of the reactants, primarily CH4 and OH (Prinn et al., 1987). Tropospheric OH concentrations are difficult to measure directly, but they are reasonably well constrained by observations of other reactive trace gases (Thompson, 1992 Martinerie et al., 1995 Prinn et al., 1995 Prinn et al., 2001). Thus, rates of tropospheric CH4 oxidation can be estimated from knowledge of atmospheric CH4 concentrations. And because tropospheric oxidation is the primary process by which CH4 is removed from the atmosphere, the estimated rate of CH4 oxidation provides a basis for approximating the total rate of supply of CH4 to the atmosphere from aU sources at steady state (see Section 8.09.2.2) (Cicerone and Oremland, 1988). [Pg.4298]

Crutzen PJ, Gidel LT. 1983. A two-dimensional photochemical model of the atmosphere. 2 The tropospheric budgets of the anthropogenic chlorocarbons, carbon monoxide, methane, chloromethane and the effect of various nitrogen oxides sources on the tropospheric ozone. Journal of Geophysical Research... [Pg.196]

Carbon monoxide (CO) is also formed in aquatic environments from the photochemical degradation of DOM [3,4,8,22,94-105]. Strong gradients of CO have been observed in the lowest 10 metres of the atmosphere over the Atlantic Ocean [97]. The samples nearest the ocean surface were some 50 ppb higher than at the 10-metre altitude-sampling inlet. This implies that the ocean is a source of CO to the atmosphere and that this source can increase the atmospheric concentration. CO is reactive in the troposphere and thus its emissions from the ocean may influence the hydroxyl radical (OH) and ozone concentrations in the marine atmospheric boundary layer that is remote from strong continental influences. [Pg.150]

Oxidation of methane is one of the sources of atmospheric CO. Another internal source of importance is the oxidation of terpenes and isoprenes emitted by forests (Crutzen, 1983). The carbon monoxide concentration in the atmosphere ranges from 0.05 to 0.20 ppmv in the remote troposphere (with considerable differences between the northern and southern hemispheres), which means that about 0.2 Pg of carbon is present as CO in the atmosphere. [Pg.242]

A fairly general treatment of trace gases in the troposphere is based on the concept of the tropospheric reservoir introduced in Section 1.6. The abundance of most trace gases in the troposphere is determined by a balance between the supply of material to the atmosphere (sources) and its removal via chemical and biochemical transformation processes (sinks). The concept of a tropospheric reservoir with well-delineated boundaries then defines the mass content of any specific substance in, its mass flux through, and its residence time in the reservoir. For quantitative considerations it is necessary to identify the most important production and removal processes, to determine the associated yields, and to set up a detailed account of sources versus sinks. In the present chapter, these concepts are applied to the trace gases methane, carbon monoxide, and hydrogen. Initially, it will be useful to discuss a steady-state reservoir model and the importance of tropospheric OH radicals in the oxidation of methane and many other trace gases. [Pg.131]

Methane in the troposphere contributes to the photochanical production of carbon monoxide and ozone. The photochemical oxidation of methane is a major source of water vapor in the stratosphere. [Pg.196]


See other pages where Carbon monoxide, tropospheric sources is mentioned: [Pg.41]    [Pg.18]    [Pg.35]    [Pg.375]    [Pg.397]    [Pg.241]    [Pg.260]    [Pg.623]    [Pg.2904]    [Pg.265]    [Pg.303]    [Pg.655]    [Pg.19]    [Pg.395]    [Pg.36]    [Pg.32]    [Pg.366]    [Pg.3]    [Pg.205]    [Pg.489]    [Pg.3]    [Pg.273]    [Pg.274]   
See also in sourсe #XX -- [ Pg.405 ]




SEARCH



Carbon monoxide sources

Carbon monoxide, tropospheric

Carbon source

Troposphere

Troposphere carbon monoxide

Tropospheric

© 2024 chempedia.info