Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon electrical properties

Thus far the importance of carbon cluster chemistry has been in the discovery of new knowl edge Many scientists feel that the earliest industrial applications of the fullerenes will be based on their novel electrical properties Buckminsterfullerene is an insulator but has a high electron affinity and is a superconductor in its reduced form Nanotubes have aroused a great deal of interest for their electrical properties and as potential sources of carbon fibers of great strength... [Pg.437]

Electrical Properties. (See Table 1.) A new family of ABS products exhibiting electrostatic dissipative properties without the need for nonpolymeric additives or fillers (carbon black, metal) is now also commercially available (2). [Pg.203]

The main electroceramic apphcations of titanium dioxide derive from its high dielectric constant (see Table 6). Rutile itself can be used as a dielectric iu multilayer capacitors, but it is much more common to use Ti02 for the manufacture of alkaline-earth titanates, eg, by the cocalciuation of barium carbonate and anatase. The electrical properties of these dielectrics are extremely sensitive to the presence of small (<20 ppm) quantities of impurities, and high performance titanates require consistently pure (eg, >99.9%) Ti02- Typical products are made by the hydrolysis of high purity titanium tetrachloride. [Pg.121]

Alkaline-Earth Titanates. Some physical properties of representative alkaline-earth titanates ate Hsted in Table 15. The most important apphcations of these titanates are in the manufacture of electronic components (109). The most important member of the class is barium titanate, BaTi03, which owes its significance to its exceptionally high dielectric constant and its piezoelectric and ferroelectric properties. Further, because barium titanate easily forms solid solutions with strontium titanate, lead titanate, zirconium oxide, and tin oxide, the electrical properties can be modified within wide limits. Barium titanate may be made by, eg, cocalcination of barium carbonate and titanium dioxide at ca 1200°C. With the exception of Ba2Ti04, barium orthotitanate, titanates do not contain discrete TiO ions but ate mixed oxides. Ba2Ti04 has the P-K SO stmcture in which distorted tetrahedral TiO ions occur. [Pg.127]

Carbon electrodes are the normal choice for the link in the connection chain to deflver power to the arc tip. Graphite may be used in special apphcations, but the higher cost of graphite favors the use of carbon electrodes. Carbon possesses properties ideal to its appHcation as an electrode. These properties include no softening point, no melting point, electrical conductivity, strength increases with increasing temperature, resistivity drops as temperature increases, available in the size and purity desired, and cost effectiveness. [Pg.520]

Both the chemical solubility and the electrical properties are consistent with those expected of a lightly polar polymer, whilst reactivity is consistent with that of a polymer containing hydrolysable carbonate ester linkages partially protected by aromatic hydrocarbon groupings. The influence of these factors on specific properties is amplified in subsequent sections. [Pg.563]

The above data represent the first from composites fabricated with fixed catalyst VGCF. A review of the data leads to the conclusion that the thermal and electrical properties of this type of carbon fiber are perhaps the most likely to be exploited in the short term. While mechanical properties of the composites are not as attractive as the thermal and electrical, it may be noted that no effort has... [Pg.155]

The Emerman model described in the previous section is hardly applicable to the carbon black-filled CCM as the black particles have sizes of hundreds angstrom and such a composite, compared with the molding channel size, may be considered as a homogeneous viscous fluid. Therefore, the polymer structure, crystallinity and orientation play an important role for such small particles. The above-given example of manufacture of the CCM demonstrates the importance of these factors being considered during processing of a composite material to and article with the desired electrical properties. [Pg.136]

But there is another method — the use of heterogeneous blends of polymers [45, 46], To this end, electrical properties and distribution of the filler (carbon black) in the mixtures of polyethylene and thermodynamically incompatible polymers were investigated. [Pg.136]

For example, the final heat treatment temperatures In the manufacture will produce different electrochemical properties, even with the same surface treatments (2-4) since the structure and electrical property of glassy carbon depends on the temperature, as Indicated by the single crystal TEM patterns and by measurement of temperature dependent conductivity (5-6). On the other hand. It Is also well established that the electrochemical properties of carbon-based electrodes are markedly affected by surface treatments. [Pg.582]

Other types of carbon (amorphous or transitional forms with turbostratic structure) consist of fragments of graphitelike regions cross-linked to a three-dimensional polymer by carbon chains. Unlike graphite, the transitional forms are organic semiconductors with electrical properties determined by delocalized rr-electrons. [Pg.543]

Electrolyte effects on the cycling stability of lithium storage metals and alloys indicate the importance of SEI formation in this case, too. Very early measurements suggest that additives such as CO2 do not only improve the cycling stability of metallic lithium [41] and graphitic carbons (see above), but also that of lithium storage metals (Fig. 18), which may be related with the electrical properties of the SEI (Fig. 19) [13]. [Pg.201]

The orbital bonding nature within carbon nanotubes creates unique electrical properties within a non-metallic molecule, which is a result of the delocalization of the -electron donated by each atom. Electrical conductivity can take place along the entire nanotube due to the freedom of -electron flow, making possible the design of circuits of extremely low nanometer diameter. [Pg.639]

CNTs offer an exciting possibility for developing ultrasensitive electrochemical biosensors because of their unique electrical properties and biocompatible nanostructures. Luong et al. have fabricated a glucose biosensor based on the immobilization of GOx on CNTs solubilized in 3-aminopropyltriethoxysilane (APTES). The as-prepared CNT-based biosensor using a carbon fiber has achieved a picoamperometric response current with the response time of less than 5 s and a detection limit of 5-10 pM [109], When Nation is used to solubilize CNTs and combine with platinum nanoparticles, it displays strong interactions with Pt nanoparticles to form a network that connects Pt nanoparticles to the electrode surface. The Pt-CNT nanohybrid-based glucose biosensor... [Pg.502]

X. Zhang, J. Zhang, R. Wang, and Z. Liu, Cationic surfactant directed polyaniline/CNT nanocables synthesis, characterization, and enhanced electrical properties. Carbon 42, 1455—1461 (2004). [Pg.524]


See other pages where Carbon electrical properties is mentioned: [Pg.375]    [Pg.70]    [Pg.531]    [Pg.533]    [Pg.224]    [Pg.461]    [Pg.505]    [Pg.492]    [Pg.544]    [Pg.24]    [Pg.143]    [Pg.690]    [Pg.251]    [Pg.235]    [Pg.252]    [Pg.45]    [Pg.47]    [Pg.143]    [Pg.159]    [Pg.277]    [Pg.540]    [Pg.145]    [Pg.114]    [Pg.93]    [Pg.181]    [Pg.357]    [Pg.362]    [Pg.554]    [Pg.375]    [Pg.7]    [Pg.529]    [Pg.23]    [Pg.378]    [Pg.138]   
See also in sourсe #XX -- [ Pg.586 ]

See also in sourсe #XX -- [ Pg.236 , Pg.240 ]




SEARCH



Carbon properties

Carbonates properties

© 2024 chempedia.info