Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon dioxide predicted

Suppose that the instability of carbonates when heated depends on the ability of the metal cation to polarize the carbonate ion and remove an oxide ion from it, thereby releasing carbon dioxide. Predict the order of thermal stability of the Groups 1 and 2 metal carbonates. Comment on the likely stability of aluminum carbonate. [Pg.847]

Figure 5 shows the partial molar volume of naphthalene in supercritical carbon dioxide predicted by theory compared with the data of Eckert et al. (1). Neither naphthalene nor carbon dioxide would be expected to be described quantitatively by the LJ potential. Furthermore, no binary interaction parameter was used with the Lorentz-Berthelot estimates for the CO2-C10H8 interaction. Thus, the degree of agreement between effectively a priori prediction and experiment is judged to be very satisfactory. [Pg.34]

For supercritical carbon dioxide, predict the effect that the following changes will have on the elution time in an SFC experiment. [Pg.1018]

A gumdrop model of carbon dioxide predicts a linear structure with the C — 0 bonds pointed in opposite directions. ... [Pg.321]

Consequently, results strongly suggest that while equations (8-6) and (8-7) are satisfactory for modeling the conversion of acetaldehyde, a more sophisticated model is needed for accurate carbon dioxide predictions, a matter that should motivate further research. [Pg.156]

If produced gas contains water vapour it may have to be dried (dehydrated). Water condensation in the process facilities can lead to hydrate formation and may cause corrosion (pipelines are particularly vulnerable) in the presence of carbon dioxide and hydrogen sulphide. Hydrates are formed by physical bonding between water and the lighter components in natural gas. They can plug pipes and process equipment. Charts such as the one below are available to predict when hydrate formation may become a problem. [Pg.250]

We can combine our knowledge of molecular geometry with a feel for the polarity of chemical bonds to predict whether a molecule has a dipole moment or not The molec ular dipole moment is the resultant of all of the individual bond dipole moments of a substance Some molecules such as carbon dioxide have polar bonds but lack a dipole moment because their geometry causes the individual C=0 bond dipoles to cancel... [Pg.31]

Reasonable prediction can be made of the permeabiUties of low molecular weight gases such as oxygen, nitrogen, and carbon dioxide in many polymers. The diffusion coefficients are not compHcated by the shape of the permeant, and the solubiUty coefficients of each of these molecules do not vary much from polymer to polymer. Hence, all that is required is some correlation of the permeant size and the size of holes in the polymer matrix. Reasonable predictions of the permeabiUties of larger molecules such as flavors, aromas, and solvents are not easily made. The diffusion coefficients are complicated by the shape of the permeant, and the solubiUty coefficients for a specific permeant can vary widely from polymer to polymer. [Pg.498]

The permachor method is an empirical method for predicting the permeabiUties of oxygen, nitrogen, and carbon dioxide in polymers (29). In this method a numerical value is assigned to each constituent part of the polymer. An average number is derived for the polymer, and a simple equation converts the value into a permeabiUty. This method has been shown to be related to the cohesive energy density and the free volume of the polymer (2). The model has been modified to liquid permeation with some success. [Pg.498]

The balance between animal and plant life cycles as affected by the solubiHty of carbon dioxide ia the earth s water results ia the carbon dioxide content ia the atmosphere of about 0.03 vol %. However, carbon dioxide content of the atmosphere seems to be increa sing as iacreased amounts of fossil fuels are burned. There is some evidence that the rate of release of carbon dioxide to the atmosphere may be greater than the earth s abiHty to assimilate it. Measurements from the U.S. Water Bureau show an iacrease of 1.36% ia the CO2 content of the atmosphere ia a five-year period and predictions iadicate that by the year 2000 the content may have iacreased by 25% (see Airpollution). [Pg.20]

The values lead to a computed value for AH of 60.64 kcal-moT for the reaction, and a predicted value of -94.64 kcal-moT for AHf for carbon dioxide. This value is in excellent agreement with the experimental value of -93.96 kcal-moT ... [Pg.183]

A 1999 study by the Institute of Terrestrial Ecology predicts that tropical rain forests will be able to continue to absorb carbon dioxide at the current rate of 2 billion tons per year until global temperatures rise by 8°F (4.5°C). At this point, evaporation rates will be high enough to decrease rainfall for the forests, leading to the collapse of tropical ecosystems. This collapse will decrease the amount of carbon... [Pg.188]

Heat transfer in the furnace is mainly by radiation, from the incandescent particles in the flame and from hot radiating gases such as carbon dioxide and water vapor. The detailed theoretical prediction of overall radiation exchange is complicated by a number of factors such as carbon particle and dust distributions, and temperature variations in three-dimensional mixing. This is overcome by the use of simplified mathematical models or empirical relationships in various fields of application. [Pg.347]

Heal content, 110. 116 change (luring a reaction, 110 of a substance, 109 Heat of combustion of diamond, 122 graphite, 122 hydrazine, 47 hydrogen, 40 methane, 123 Heat of formation, 113 Heat of reaction, 135 between elements, table, 112 oxidation of HC1, 160 oxidation of sulfur dioxide, 161 predicting, 112 Heat of reaction to form ammonia, 112 Br atoms, 290 carbon dioxide, 112 carbon monoxide, 112 Cl atoms, 290 CO + Hi, 110 ethane, 112 F atoms, 290 H atoms, 274 hydrogen chloride, 160 hydrogen iodide, 112 iron(Ill) oxide, 162 Li atoms, 290 Li + Br, 290 Li + F, 290 Na + Cl, 290 NHs products, 114 Na atoms, 290 NO, 112 NOj, 112... [Pg.460]

Grassman (G7) has proposed a simplified theoretical treatment of heat and mass transfer between two fluid phases, as, for example between a dispersed gas phase and a continuous liquid phase von Bogdandy et al. (V8) measured the rate of absorption of carbon dioxide by water and by decalin, and found that the absorption rate approximated that predicted by Grass-mann in the laminar region but was above the theoretical values in the... [Pg.111]

Amino acids are the building blocks of proteins, which have long chainlike molecules. They are oxidized in the body to urea, carbon dioxide, and liquid water. Is this reaction a source of heat for the body Use the information in Appendix 2A to predict the standard enthalpy of reaction for the oxidation of the simplest amino acid, glycine (NH2CH2COOH), a solid, to solid urea (H2NCONH2), carbon dioxide gas, and liquid water ... [Pg.371]


See other pages where Carbon dioxide predicted is mentioned: [Pg.308]    [Pg.411]    [Pg.514]    [Pg.292]    [Pg.363]    [Pg.498]    [Pg.23]    [Pg.405]    [Pg.1133]    [Pg.1255]    [Pg.2219]    [Pg.14]    [Pg.182]    [Pg.188]    [Pg.250]    [Pg.256]    [Pg.256]    [Pg.478]    [Pg.775]    [Pg.1277]    [Pg.661]    [Pg.1272]    [Pg.754]    [Pg.13]    [Pg.317]    [Pg.19]    [Pg.112]    [Pg.146]    [Pg.149]    [Pg.154]    [Pg.160]    [Pg.195]   
See also in sourсe #XX -- [ Pg.355 ]




SEARCH



Carbon prediction

Supercritical carbon dioxide prediction

© 2024 chempedia.info