Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon dioxide molecular shape

Reasonable prediction can be made of the permeabiUties of low molecular weight gases such as oxygen, nitrogen, and carbon dioxide in many polymers. The diffusion coefficients are not compHcated by the shape of the permeant, and the solubiUty coefficients of each of these molecules do not vary much from polymer to polymer. Hence, all that is required is some correlation of the permeant size and the size of holes in the polymer matrix. Reasonable predictions of the permeabiUties of larger molecules such as flavors, aromas, and solvents are not easily made. The diffusion coefficients are complicated by the shape of the permeant, and the solubiUty coefficients for a specific permeant can vary widely from polymer to polymer. [Pg.498]

This determination of the molecular geometry of carbon dioxide and water also accounts for the fact that carbon dioxide does not possess a dipole and water has one, even though both are composed of polar covalent bonds. Carbon dioxide, because of its linear shape, has partial negative charges at both ends and a partial charge in the middle. To possess a dipole, one end of the molecule must have a positive charge and the other a negative end. Water, because of its bent shape, satisfies this requirement. Carbon dioxide does not. [Pg.154]

A molecule is considered to be polar, or to have a molecular polarity, when the molecule has an overall imbalance of charge. That is, the molecule has a region with a partial positive charge, and a region with a partial negative charge. Surprisingly, not all molecules with polar bonds are polar molecules. For example, a carbon dioxide molecule has two polar C=0 bonds, but it is not a polar molecule. On the other hand, a water molecule has two polar O—H bonds, and it is a polar molecule. How do you predict whether or not a molecule that contains polar bonds has an overall molecular polarity To determine molecular polarity, you must consider the shape of the molecule and the bond dipoles within the molecule. [Pg.8]

In these two cases the dipole arrows cancel each other out because of the shape of the molecules. The linear shape of the molecule of carbon dioxide puts the dipole arrows in opposite directions to counterbalance each other. The same holds true for the tetrahedral molecular geometry found in carbon tetrachloride. Despite having polar bonds, these two molecules are nonpolar. There is no overall dipole moment in these molecules because the dipole arrows are of the same magnitude but lie in opposite directions in the molecule. This counterbalance causes the molecule to be nonpolar. [Pg.92]

In conclusion, both polar and nonpolar modifiers can be added to the SFC mobile phase to increase the solvent strength. Unlike pure carbon dioxide, the modified CO2 can elute polar and high-molecular-weight solutes due to its enhanced solvating power. The retention factors are reduced and peak shapes greatly improved by using binary or ternary mobile phases. Although ultraviolet detection can be applied for separations with many modifiers, only water, formic acid, and formamide are compatible with FID. [Pg.1006]

The compounds carbon dioxide (CO2) and sulfur dioxide (SO2) are formed by the burning of coal. Their apparently similar formulas mask underlying differences in molecular structure. Determine the shapes of these two types of molecules, identify the hybridization at the central atom of each, and compare the natures of their it bonds. [Pg.859]

Carbon dioxide, CO2, is a three-atom molecule in which each carbon-oxygen bond is polar because of the electronegativity difference between C and O. But the molecule as a whole is shown by experiment (dipole moment measurement) to be nonpolar. This tells us that the polar bonds are arranged in such a way that the bond polarities cancel. Water, H2O, on the other hand, is a very polar molecule this tells us that the H—O bond polarities do not cancel one another. Molecular shapes clearly play a crucial role in determining molecular dipole moments. We will develop a better understanding of molecular shapes in order to understand molecular polarities. [Pg.312]

Figure 13-31 The packing arrangement in a molecular crystal depends on the shape of the molecule as well as on the electrostatic interactions of any regions of excess positive and negative charge in the molecules. The arrangements in some molecular crystals are shown here (a) carbon dioxide, CO2 (b) benzene, CgHg. Figure 13-31 The packing arrangement in a molecular crystal depends on the shape of the molecule as well as on the electrostatic interactions of any regions of excess positive and negative charge in the molecules. The arrangements in some molecular crystals are shown here (a) carbon dioxide, CO2 (b) benzene, CgHg.
Enzymes are proteins that act as catalysts for specific biochemical reactions in living systems. The reactants in enz)une-catalyzed reactions are called substrates. Thousands of vital processes in our bodies are catalyzed by many distinct enzymes. For instance, the enzyme carbonic anhydrase catalyzes the combination of CO2 and water (the substrates), facilitating most of the transport of carbon dioxide in the blood. This combination reaction, ordinarily uselessly slow, proceeds rapidly in the presence of carbonic anhydrase a single molecule of this enzyme can promote the conversion of more than 1 million molecules of carbon dioxide each second. Each enzyme is extremely specific, catalyzing only a few closely related reactions—or, in many cases, only one particular reaction—for only certain substrates. Modern theories of enzyme action attribute this to the requirement of very specific matching of shapes (molecular geometries) for a particular substrate to bind to a particular enzyme (Figure 16-19). [Pg.696]

We can combine our knowledge of molecular geometry with a feel for the polarity of chemical bonds to predict whether a molecule has a dipole moment or not. The molecular dipole moment is the resultant of all of the individual bond dipole moments of a substance. Some molecules, such as carbon dioxide, have polar bonds, but lack a dipole moment because their shape (see Figure 1.12) causes the individual C=0 bond dipoles to cancel. [Pg.30]

When we are to determine how many electron groups that surround an atom, the Lewis structure can be of great help (see the previous section 2.23 Lewis structure). From the Lewis structure of a given molecule you can simply count how many bonds and lone pairs that surround an atom. That way you have the number of electron groups. The VSEPR theoiy tells us that these electron groups will be placed as far apart as possible. In the following example we will use the VSEPR theory to predict the molecular geometries of a water molecule and a carbon dioxide molecule. That way we will discover why a carbon dioxide molecule is linear and why a water molecule is V-shaped. [Pg.67]

Porous graphitic carbon (section 4.2.5) is an inert but highly retentive sorbent under supercritical fluid chromatography conditions. Supercritical carbon dioxide is a weak eluent for porous graphitic carbon and even compounds such as naphthalene are difficult to elute in a reasonable time [72]. Low molecular mass polar compounds generally have poor peak shapes, but in this case most likely due to limited solubility in tbe mobile phase rather than undesirable interactions with active sites on the stationary phase. The flat surface of porous graphitic carbon leads to preferential adsorption of... [Pg.581]


See other pages where Carbon dioxide molecular shape is mentioned: [Pg.1960]    [Pg.141]    [Pg.190]    [Pg.138]    [Pg.148]    [Pg.250]    [Pg.211]    [Pg.123]    [Pg.141]    [Pg.248]    [Pg.194]    [Pg.415]    [Pg.4]    [Pg.155]    [Pg.11]    [Pg.234]    [Pg.647]    [Pg.14]    [Pg.199]    [Pg.25]    [Pg.149]    [Pg.197]    [Pg.361]    [Pg.158]    [Pg.161]    [Pg.168]    [Pg.69]    [Pg.316]    [Pg.203]    [Pg.570]    [Pg.576]    [Pg.884]   
See also in sourсe #XX -- [ Pg.88 ]

See also in sourсe #XX -- [ Pg.316 ]

See also in sourсe #XX -- [ Pg.316 ]

See also in sourсe #XX -- [ Pg.321 ]

See also in sourсe #XX -- [ Pg.139 ]




SEARCH



Carbon dioxide shape

Carbon molecular shape

Carbon shape

Molecular shape

© 2024 chempedia.info