Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon corrosion numerical results

Equations (18-20) are discretized by the control volume method53 and solved numerically to obtain distributions of species (H2, 02, and N2) concentration, phase potential (solid and electrolyte), and the current resulting from each electrode reaction, in particular, carbon corrosion and oxygen evolution currents at the cathode catalyst layer, with the following initial and boundary conditions ... [Pg.63]

Since HtS dissolved in water is very corrosive to carbon 4 steel, a comprehensive corrosion-control program is being conducted. In the field, each well is treated once per month by displacing inhibitor down to the perfora-. tions with stock tank oil. Corrosion coupons in the flow-lines are inspected every 6 months Little corrosion has been detected in the field. In the plants, corrosion in-hibitor is added daily to the gas-sweetening solvent, the salt water system, and the stabilizer overhead. Inhibitor is -Jj also added to bulk chemicals as received. Numerous corrosion coupons and probes are installed in each facility and are pulled for inspection every 1 to 3 months Corrosion rates have been low (less than I mil/year) asY result of the inhibitor injection program. [Pg.72]

Corrosion and Ionisation.—Iron will remain untarnished for indefinite periods in the presence of concentrated solutions of the carbonates of the alkali metals, even in the presence of small quantities of other salts. If, however, the alkali carbonate is very dilute, it cannot entirely inhibit corrosion. Now, the minimum quantities of alkali carbonate required to inhibit the corrosive actions of a given concentration of various other salts of the same alkali metal have been determined.1 The results show that, if the added salts are arranged in order according to the amount of alkali carbonate required to inhibit corrosion, they are also not merely in the order of the relative strengths of their acid radicles, but the relative quantities of carbonate bear a general relationship to the numerical values found for the strengths of the acids by electrical conductivity methods. This is well illustrated in the following table —... [Pg.76]

While these techniques are widely used, they do not provide sufficient purity. Liquid phase purification is not an environmentally friendly process and requires corrosion-resistant equipment, as well as costly waste disposal processes. Alternative dry chemistry approaches, such as catalyst-assisted oxidation or ozone-eiuiched air oxidation, also require the use of aggressive substances or supplementary catalysts, which result in an additional contamination. Moreover, in many previous studies trial and error rather than insight and theory approaches have been applied. As a result, a lack of understanding and limited process control often lead to extensive sample losses of up to 90%. Because oxidation in air would be a controllable and enviromnentaUy friendly process, selective purification of carbon nanomaterials, such as CNT and ND, in air is very attractive. In contrast to current purification techniques, air oxidation does not require the use of toxic or aggressive chemicals, catalysts, or inhibitors and opens avenues for numerous new applications of carbon nanomaterials. [Pg.293]

Seawater is a unique environment. A recent worldwide test program was recently completed by ASTM Task Group Gl.09.02.03 to evaluate the corrosivity of seawater at a number of sites [/5]. Though these results indicated the uniqueness of natural seawater, corrosivity was site-specific and influenced by numerous factors. Seawater can vary widely in terms of chemical composition, dissolved oxygen content, temperature, salinity, pH, carbonate levels, flow, degree of fouling, biological activity, and pollution [16. ... [Pg.364]

Many induced flotation units, particularly mechanical flotation units, operate at pressures within a few ounces of atmospheric pressure. The walls are thin and have numerous penetrations for motor shafts and observation hatches. As a result of the simplicity of design, air can easily enter the units around the paddle or if observation hatches are left open. Oxygen in the water treating system increases the corrosion rate in the unit as well as all downstream carbon steel equipment and can cause the formation of a reddish precipitate resulting from oxidation of dissolved iron in the treated water. To avoid corrosion and the precipitate, care should be taken to avoid oxygen ingress. Hatches should be left closed as much as possible, and the integrity of shaft seals should be maintained. [Pg.181]


See other pages where Carbon corrosion numerical results is mentioned: [Pg.729]    [Pg.62]    [Pg.177]    [Pg.762]    [Pg.186]    [Pg.118]   
See also in sourсe #XX -- [ Pg.453 , Pg.454 , Pg.455 , Pg.456 ]




SEARCH



Carbon corrosion

Carbon results

Carbonate corrosion

Numerical results

© 2024 chempedia.info