Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon chemical behavior

The number of protons in an atom defines what element it is. For example carbon atoms have six protons, hydrogen atoms have one, and oxygen atoms have eight. The number of protons in an atom is referred to as the atomic number of that element. The number of protons in an atom also determines the chemical behavior of the element. [Pg.220]

The carbon-halogen bonds of aryl halides are both shorter and stronger than the carbon-halogen bonds of alkyl halides In this respect as well as m their chemical behavior they resemble vinyl halides more than alkyl halides A hybridization effect seems to be responsible because as the data m Table 23 1 indicate similar patterns are seen for both carbon-hydrogen bonds and carbon-halogen bonds An increase m s... [Pg.971]

The alkanes have low reactivities as compared to other hydrocarbons. Much alkane chemistry involves free-radical chain reactions that occur under vigorous conditions, eg, combustion and pyrolysis. Isobutane exhibits a different chemical behavior than / -butane, owing in part to the presence of a tertiary carbon atom and to the stability of the associated free radical. [Pg.402]

Silicon (3), which resembles metals in its chemical behavior, generally has a valence of +4. In a few compounds it exhibits a +2 valence, and in silicides it exists as a negative ion and largely violates the normal valency rules. Silicon, carbon, germanium, tin, and lead comprise the Group 14 (IVA) elements. Silicon and carbon form the carbide, SiC (see Carbides). Silicon and germanium are isomorphous and thus mutually soluble in all proportions. Neither tin nor lead reacts with silicon. Molten silicon is immiscible in both molten tin and molten lead. [Pg.525]

Oxo Ion Salts. Salts of 0x0 anions, such as nitrate, sulfate, perchlorate, iodate, hydroxide, carbonate, phosphate, oxalate, etc, are important for the separation and reprocessing of uranium, hydroxide, carbonate, and phosphate ions are important for the chemical behavior of uranium ia the environment (150—153). [Pg.325]

Zirconium tetrabromide [13777-25-8] ZrBr, is prepared direcdy from the elements or by the reaction of bromine on a mixture of zirconium oxide and carbon. It may also be made by halogen exchange between the tetrachloride and aluminum bromide. The physical properties are given in Table 7. The chemical behavior is similar to that of the tetrachloride. [Pg.436]

In the oxaziridines (1) ring positions 1, 2 and 3 are attributed to oxygen, nitrogen and carbon respectively. The latter almost always is in the oxidation state of a carbonyl compound and only in rare cases that of a carboxylic acid. Oxaziridinones are not known. The nitrogen can be substituted by aryl, alkyl, H or acyl the substituent causes large differences in chemical behavior. Fused derivatives (4), accessible from cyclic starting materials (Section 5.08.4.1), do not differ from monocyclic oxaziridines. [Pg.196]

Most compounds in which carbon is the key element are classified as organic. Common examples of organic compounds include degreasing solvents, lubricants, and heating and motor fuels. This subsection highlights some of the more common characteristics of organics as they relate to hazards. Various relevant classes of organics are presented in terms of chemical behavior and physical properties. In order to facilitate the discussion to follow, a few basic definitions will be presented first. [Pg.167]

Although alkadienes have a higher degree of unsaturation than alkenes, their chemical behavior is similar to alkenes, and their physical properties are similar to alkanes containing the same number of carbon atoms. Common alkenyl groups include... [Pg.307]

The distorted sp3 angles at both carbon and sulfur atoms in small ring sulfoxides and sulfones approach their normal size beginning with the thianes. Consequently, the characteristics and chemical behavior of six- and higher-membered sulfoxides and sulfones are expected to be similar to those of the acyclic counterparts. However, in view of the constraints imposed by the cyclic array, three issues deserve study ... [Pg.465]

This overview is organized into several major sections. The first is a description of the cluster source, reactor, and the general mechanisms used to describe the reaction kinetics that will be studied. The next two sections describe the relatively simple reactions of hydrogen, nitrogen, methane, carbon monoxide, and oxygen reactions with a variety of metal clusters, followed by the more complicated dehydrogenation reactions of hydrocarbons with platinum clusters. The last section develops a model to rationalize the observed chemical behavior and describes several predictions that can be made from the model. [Pg.48]

The preparation of 5-chloro-l,2,4-thiadiazol-2-ium chlorides 95 by treatment of formimidoyl isothiocyanates 94 with a twofold excess of methanesulfenyl chloride has been reported in an unusual variation of a type C synthesis. These salts show interesting chemical behavior toward several nitrogen and carbon nucleophiles. The nature of the N-substituent determines the stability of the salt 95. When the substitutent on nitrogen is /-butyl, the salt 95 decomposes readily in solution to give the 5-chloro-l,2,4-thiadiazole 96 (Scheme 10) <2003HAC95>. [Pg.504]

Fundamentally, the high nucleophilicity of stable carbenes, coupled with the tendency to increase the coordination number at the carbenic carbon, renders their chemical behavior very similar to that of electron-rich phosphines. As such, they have aroused considerable interest as ligands in p-, cl-, and / -block chemistry. Earlier reviews (7a,b) have covered some aspects of the main group chemistry of stable nucleophilic carbenes however, there has been considerable recent activity in this field, and thus a comprehensive, up-to-date review was considered desirable. [Pg.12]

Besides the practical application, the diversity of nanostructured carbon allotropes makes nanocarbon also an ideal model system for the investigation of structure-function correlations in heterogeneous catalysis. Nanocarbons can be tailored in terms of their hybridization state, curvature, and aspect ratio, i.e., dimensions of stacks of basic structural units (BSU), Chapters 1 and 2. The preferred exposition of two types of surfaces, which strongly differ in their physico-chemical behavior, i.e., the basal plane and prismatic edges, can be controlled. Such controlled diversity is seldom found for other materials giving carbon a unique role in this field of basic research. The focus of this chapter is set on the most prominent representatives of the... [Pg.393]

Today, however, carbene complexes covering a broad range of different reactivities have been prepared. Often it is no longer possible to predict whether a carbene complex will behave as an electrophile or as a nucleophile. Thus, a reactivity-based nomenclature would be difficult to apply consistently. For this reason in this book compounds with a carbon-metal double bond will be called carbene complexes or alkylidene complexes , terms not associated with any specific chemical behavior. [Pg.1]

Aspects related to the chemistry of the heteroatom-terminated -carbon ligands R3P C=C and C3O have also been discussed. Thus, upon coordination, the former seem to present a partial cumulenic character [M]=C=C=PR3, but little is known about the chemical behavior of this coordinated unit. In the case of the tricarbon monoxide ligand, recent theoretical calculations have shown that coordination chemistry could be an alternative to stabilize this highly unstable heterocumulene. However, the access to metal complexes containing the C3O unit represents an exciting experimental challenge for the near future. [Pg.249]

The chemistry of polycarbonates is similar to the chemical behavior of polyesters. We can think of a carbonate as being a diester of carbonic acid, H2CO3, which is unstable itself. Polycarbonate is a strong, clear plastic used in automobiles (25%), glazing and sheet (20%), optical media (15%), appliances (8%), computers (7%), medical industry (7%), and recreation and... [Pg.261]


See other pages where Carbon chemical behavior is mentioned: [Pg.440]    [Pg.392]    [Pg.803]    [Pg.73]    [Pg.603]    [Pg.889]    [Pg.1532]    [Pg.253]    [Pg.72]    [Pg.38]    [Pg.6]    [Pg.448]    [Pg.963]    [Pg.4]    [Pg.129]    [Pg.335]    [Pg.181]    [Pg.163]    [Pg.46]    [Pg.16]    [Pg.38]    [Pg.153]    [Pg.221]    [Pg.48]    [Pg.7]    [Pg.292]    [Pg.150]    [Pg.2]    [Pg.829]    [Pg.1206]    [Pg.483]   
See also in sourсe #XX -- [ Pg.448 ]




SEARCH



Carbon behavior

Carbonate, chemical

Chemical behavior

© 2024 chempedia.info