Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon atomic weight

Their boiling points increase with the number of carbon atoms. For molecules of low carbon numbers, the addition of a carbon increases the boiling point about 25°C. Further additions result in a smaller increase. The density increases with the molecular weight 0.626 kg/1 for pentane which has 5 atoms of carbon, 0.791 kg/1 for pentacosane which has 25 carbon atoms, but the density is always much lower than 1. [Pg.3]

The solubility of hydrocarbon liquids from the same chemical family diminishes as the molecular weight increases. This effect is particularly sensitive thus in the paraffin series, the solubility expressed in mole fraction is divided by a factor of about five when the number of carbon atoms is increased by one. The result is that heavy paraffin solubilities are extremely small. The polynuclear aromatics have high solubilities in water which makes it difficult to eliminate them by steam stripping. [Pg.168]

This observation that the length of the hydrocarbon chain could be varied from 16 to 26 carbon atoms without affecting the limiting area could only mean that at this point the molecules were oriented vertically. From the molecular weight and density of palmitic acid, one computes a molecular volume of 495 A a molecule occupying only 21 A on the surface could then be about 4.5 A on the side but must be about 23 A long. In this way one begins to obtain information about the shape and orientation as well as the size of molecules. [Pg.102]

Lead has only one form, a cubic metallic lattice. Thus we can see the change from non-metal to metal in the physical structure of these elements, occurring with increasing atomic weight of the elements carbon, silicon, germanium, tin and lead. [Pg.168]

All Group IV elements form both a monoxide, MO, and a dioxide, MO2. The stability of the monoxide increases with atomic weight of the Group IV elements from silicon to lead, and lead(II) oxide, PbO, is the most stable oxide of lead. The monoxide becomes more basic as the atomic mass of the Group IV elements increases, but no oxide in this Group is truly basic and even lead(II) oxide is amphoteric. Carbon monoxide has unusual properties and emphasises the different properties of the group head element and its compounds. [Pg.177]

All Group IV elements form tetrachlorides, MX4, which are predominantly tetrahedral and covalent. Germanium, tin and lead also form dichlorides, these becoming increasingly ionic in character as the atomic weight of the Group IV element increases and the element becomes more metallic. Carbon and silicon form catenated halides which have properties similar to their tetrahalides. [Pg.195]

These first components of the autocorrelation coefficient of the seven physicochemical properties were put together with the other 15 descriptors, providing 22 descriptors. Pairwise correlation analysis was then performed a descriptor was eliminated if the correlation coefficient was equal or higher than 0.90, and four descriptors (molecular weight, the number of carbon atoms, and the first component of the 2D autocorrelation coefficient for the atomic polarizability and n-charge) were removed. This left 18 descriptors. [Pg.499]

Carbon has seven isotopes. In 1961 the International Union of Pure and Applied Chemistry adopted the isotope carbon-12 as the basis for atomic weights. Carbon-14, an isotope with a half-life of 5715 years, has been widely used to date such materials as wood, archaeological specimens, etc. [Pg.16]

Atomic Weights of the Elements Based on the Carbon 12 Standard... [Pg.346]

Hydrogenation of polybutadiene converts both cis and trans isomers to the same linear structure and vinyl groups to ethyl branches. A polybutadiene sample of molecular weight 168,000 was found by infrared spectroscopy to contain double bonds consisting of 47.2% cis, 44.9% trans, and 7.9% vinyl. After hydrogenation, what is the average number of backbone carbon atoms between ethyl side chains ... [Pg.67]

This reaction has often reached explosive proportions in the laboratory. Several methods were devised for controlling it between 1940 and 1965. For fluorination of hydrocarbons of low (1—6 carbon atoms) molecular weight at room temperature or below by these methods, yields as high as 80% of perfluorinated products were reported together with partially fluorinated species (9—11). However, fluorination reactions in that eta involving elemental fluorine with complex hydrocarbons at elevated temperatures led to appreciable cleavage of the carbon—carbon bonds and the yields invariably were only a few percent. [Pg.273]

MEK is a colorless, stable, flammable Hquid possessing the characteristic acetone-type odor of low molecular weight aUphatic ketones. MEK undergoes typical reactions of carbonyl groups with activated hydrogen atoms on adjacent carbon atoms, and condenses with a variety of reagents. Condensation of MEK with formaldehyde produces methylisopropenyl ketone (3-methyl-3-buten-2-one) ... [Pg.488]

Atomic Weight. As of this writing (ca 1994) the definition of atomic weights is based on carbon-12 [7440-44-0], the most abundant isotope of carbon, which has an atomic weight defined as exactiy 12 (21). [Pg.20]

The number of branches in HDPE resins is low, at most 5 to 10 branches per 1000 carbon atoms in the chain. Even ethylene homopolymers produced with some transition-metal based catalysts are slightly branched they contain 0.5—3 branches per 1000 carbon atoms. Most of these branches are short, methyl, ethyl, and -butyl (6—8), and their presence is often related to traces of a-olefins in ethylene. The branching degree is one of the important stmctural features of HDPE. Along with molecular weight, it influences most physical and mechanical properties of HDPE resins. [Pg.379]

Analytical Approaches. Different analytical techniques have been appHed to each fraction to determine its molecular composition. As the molecular weight increases, complexity increasingly shifts the level of analytical detail from quantification of most individual species in the naphtha to average molecular descriptions in the vacuum residuum. For the naphtha, classical techniques allow the isolation and identification of individual compounds by physical properties. Gas chromatographic (gc) resolution allows almost every compound having less than eight carbon atoms to be measured separately. The combination of gc with mass spectrometry (gc/ms) can be used for quantitation purposes when compounds are not well-resolved by gc. [Pg.167]

Hydrocarbon Carbon atoms Molecular weight Boiling pc °C... [Pg.209]


See other pages where Carbon atomic weight is mentioned: [Pg.66]    [Pg.191]    [Pg.316]    [Pg.423]    [Pg.4]    [Pg.171]    [Pg.66]    [Pg.191]    [Pg.316]    [Pg.423]    [Pg.4]    [Pg.171]    [Pg.182]    [Pg.165]    [Pg.189]    [Pg.404]    [Pg.97]    [Pg.1026]    [Pg.1008]    [Pg.33]    [Pg.269]    [Pg.252]    [Pg.134]    [Pg.282]    [Pg.296]    [Pg.375]    [Pg.498]    [Pg.242]    [Pg.509]    [Pg.35]    [Pg.298]    [Pg.380]    [Pg.382]    [Pg.80]    [Pg.497]    [Pg.223]   
See also in sourсe #XX -- [ Pg.11 , Pg.12 ]

See also in sourсe #XX -- [ Pg.65 , Pg.296 ]

See also in sourсe #XX -- [ Pg.4 ]




SEARCH



Atomic weight Atoms

Atomic weights

Carbon weight

© 2024 chempedia.info