Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chirality and carbon

Naturally occurring alliin, the major precursor to the garlic aroma, is (RcSs)-( I )-,S -allyl-[.-cysteine sulfoxide 26 (Scheme 10) with both a chiral carbon and chiral sulfur - probably the first such compound (note that sulforaphene - see earlier - was isolated more or less simultaneously with alliin). Hence there are four possible stereoisomers. The alliin level in garlic is significant 5-14 mg g 1 fresh weight. [Pg.689]

MFor discussions of the relationship between a chiral carbon and chirality, see Mislow Siegel J. Am. Chem. Soc. 1984, 106, 3319 Brand Fisher J. Chem. Educ. 1987, 64, 1035. [Pg.97]

Modified-C02 mobile phases excel at stereochemical separations, more often than not outperforming traditional HPLC mobile phases. For the separation of diastereomers, silica, diol-bonded silica, graphitic carbon, and chiral stationary phases have all been successfully employed. For enantiomer separations, the derivatized polysaccharide, silica-based Chiralcel and Chiralpak chiral stationary phases (CSPs) have been most used, with many applications, particularly in pharmaceutical analysis, readily found in the recent literature (reviewed in Refs. 1 and 2). To a lesser extent, applications employing Pirkle brush-type, cyclodextrin and antibiotic CSPs have also been described. In addi-... [Pg.1524]

Chiral 2-oxazolidones are useful recyclable auxiliaries for carboxylic acids in highly enantioselective aldol type reactions via the boron enolates derived from N-propionyl-2-oxazolidones (D.A. Evans, 1981). Two reagents exhibiting opposite enantioselectivity ate prepared from (S)-valinol and from (lS,2R)-norephedrine by cyclization with COClj or diethyl carbonate and subsequent lithiation and acylation with propionyl chloride at — 78°C. En-olization with dibutylboryl triflate forms the (Z)-enolates (>99% Z) which react with aldehydes at low temperature. The pure (2S,3R) and (2R,3S) acids or methyl esters are isolated in a 70% yield after mild solvolysis. [Pg.61]

Propadiene (H2C=C=CH2) also called allene, is the simplest cumulated diene The two tt bonds m an allene share an sp hybridized carbon and are at right angles to each other Certain allenes such as 2 3 pentadiene (CH3CH=C=CHCH3) possess a chirality axis and are chiral... [Pg.417]

J. D. Morrison and J. W. ScoXt, Asymmetric Synthesis, Vol. 4, The Chiral Carbon Pool and Chiral Sulfur, Nitrogen, Phosphorus, and Silicon Centers, Academic Press, Inc., Odando, Fla., 1984. [Pg.264]

The two oxidoreductase systems most frequentiy used for preparation of chiral synthons include baker s yeast and horse hver alcohol dehydrogenase (HLAD). The use of baker s yeast has been recendy reviewed in great detail (6,163) and therefore will not be coveted here. The emphasis here is on dehydrogenase-catalyzed oxidation and reduction of alcohols, ketones, and keto acid, oxidations at unsaturated carbon, and Bayer-Vidiger oxidations. [Pg.347]

Nitrogen chirality may also be produced by the action of an achiral peroxyacid on a Schiff base containing a chiral amine (75JOC3878). In this case the oxaziridine contains a configurationally known centre of chirality relative to this, absolute configurations of the centres of chirality at nitrogen and carbon, and thus the complete absolute configuration of the molecule, can be determined (see Section 5.08.2.2). [Pg.200]

If the amount of the sample is sufficient, then the carbon skeleton is best traced out from the two-dimensional INADEQUATE experiment. If the absolute configuration of particular C atoms is needed, the empirical applications of diastereotopism and chiral shift reagents are useful (Section 2.4). Anisotropic and ring current effects supply information about conformation and aromaticity (Section 2.5), and pH effects can indicate the site of protonation (problem 24). Temperature-dependent NMR spectra and C spin-lattice relaxation times (Section 2.6) provide insight into molecular dynamics (problems 13 and 14). [Pg.68]

Fig. 14. High resolution TEM observations of three multi-wall carbon nanotubes with N concentric carbon nanotubes with various outer diameters do (a) N = 5, do = 6.7 nm, (b) N = 2, do = 5.5 nm, and (c) N = 7, do = 6.5 nm. The inner diameter of (c) is d = 2.3 nm. Each cylindrical shell is described by its own diameter and chiral angle [151]. Fig. 14. High resolution TEM observations of three multi-wall carbon nanotubes with N concentric carbon nanotubes with various outer diameters do (a) N = 5, do = 6.7 nm, (b) N = 2, do = 5.5 nm, and (c) N = 7, do = 6.5 nm. The inner diameter of (c) is d = 2.3 nm. Each cylindrical shell is described by its own diameter and chiral angle [151].
The ID electronic energy bands for carbon nanotubes [170, 171, 172, 173, 174] are related to bands calculated for the 2D graphene honeycomb sheet used to form the nanotube. These calculations show that about 1/3 of the nanotubes are metallic and 2/3 are semiconducting, depending on the nanotube diameter di and chiral angle 6. It can be shown that metallic conduction in a (n, m) carbon nanotube is achieved when... [Pg.70]

Early transport measurements on individual multi-wall nanotubes [187] were carried out on nanotubes with too large an outer diameter to be sensitive to ID quantum effects. Furthermore, contributions from the inner constituent shells which may not make electrical contact with the current source complicate the interpretation of the transport results, and in some cases the measurements were not made at low enough temperatures to be sensitive to 1D effects. Early transport measurements on multiple ropes (arrays) of single-wall armchair carbon nanotubes [188], addressed general issues such as the temperature dependence of the resistivity of nanotube bundles, each containing many single-wall nanotubes with a distribution of diameters d/ and chiral angles 6. Their results confirmed the theoretical prediction that many of the individual nanotubes are metallic. [Pg.75]

Fig. 3. The 2D graphene sheet is shown along with the vector which specifies the chiral nanotube. The pairs of integers ( , ) in the figure specify chiral vectors Cy, (see Table I) for carbon nanotubes, including zigzag, armchair, and chiral tubules. Below each pair of integers (n,m) is listed the number of distinct caps that can be joined continuously to the cylindrical carbon tubule denoted by (n,wi)[6]. The circled dots denote metallic tubules and the small dots are for semiconducting tubules. Fig. 3. The 2D graphene sheet is shown along with the vector which specifies the chiral nanotube. The pairs of integers ( , ) in the figure specify chiral vectors Cy, (see Table I) for carbon nanotubes, including zigzag, armchair, and chiral tubules. Below each pair of integers (n,m) is listed the number of distinct caps that can be joined continuously to the cylindrical carbon tubule denoted by (n,wi)[6]. The circled dots denote metallic tubules and the small dots are for semiconducting tubules.
These properties are illustrative of the unique behavior of ID systems on a rolled surface and result from the group symmetry outlined in this paper. Observation of ID quantum effects in carbon nanotubes requires study of tubules of sufficiently small diameter to exhibit measurable quantum effects and, ideally, the measurements should be made on single nanotubes, characterized for their diameter and chirality. Interesting effects can be observed in carbon nanotubes for diameters in the range 1-20 nm, depending... [Pg.34]

The existence of carbon nanotubes with diameters small compared to the de Broglie wavelength has been described by Iijima[l,2,3] and others[4,5]. The energy band structures for carbon nanotubes have been calculated by a number of authors and the results are summarized in this issue by M.S. Dresselhaus, G. Dres-selhaus, and R. Saito. In short, the tubules can be either metallic or semiconducting, depending on the tubule diameter and chirality[6,7,8]. The calculated density of states[8] shows singularities... [Pg.121]

Experimental measurements to test these remarkable theoretical predictions of the electronic structure of carbon nanotubes are difficult to carry out because of the strong dependence of the predicted properties on tubule diameter and chirality. Ideally, electronic or optical measurements should be made on individual single-wall nanotubes that have been characterized with regard to diameter and chiral angle. Further ex-... [Pg.121]

Aldoses with at least three carbons and ketoses with at least four carbons contain chiral centers (Chapter 4). The nomenclature for such molecules must specify the configuration about each asymmetric center, and drawings of these molecules must be based on a system that clearly specifies these configurations. [Pg.210]

The l ,J -DBFOX/Ph-transition metal aqua complex catalysts should be suitable for the further applications to conjugate addition reactions of carbon nucleophiles [90-92]. What we challenged is the double activation method as a new methodology of catalyzed asymmetric reactions. Therein donor and acceptor molecules are both activated by achiral Lewis amines and chiral Lewis acids, respectively the chiral Lewis acid catalysts used in this reaction are J ,J -DBFOX/Ph-transition metal aqua complexes. [Pg.291]

Several more examples of chiral molecules are shown below. Check for yourself that the labeled carbons are chirality centers. You might note that carbons in — CK2—, -CJH3, C—O, C=C, and C=C groups can t be chirality centers. (Why )... [Pg.293]


See other pages where Chirality and carbon is mentioned: [Pg.911]    [Pg.192]    [Pg.140]    [Pg.214]    [Pg.300]    [Pg.42]    [Pg.911]    [Pg.192]    [Pg.140]    [Pg.214]    [Pg.300]    [Pg.42]    [Pg.125]    [Pg.295]    [Pg.512]    [Pg.44]    [Pg.36]    [Pg.156]    [Pg.66]    [Pg.73]    [Pg.75]    [Pg.78]    [Pg.81]    [Pg.53]    [Pg.34]    [Pg.35]    [Pg.77]    [Pg.136]    [Pg.140]    [Pg.192]    [Pg.193]    [Pg.51]    [Pg.52]    [Pg.108]    [Pg.158]    [Pg.569]   
See also in sourсe #XX -- [ Pg.193 ]

See also in sourсe #XX -- [ Pg.43 ]




SEARCH



Chiral carbon

© 2024 chempedia.info