Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbocyclizations cyclizations

The usual reactions involved in carbocyclic cyclization of the aforementioned open-chain intermediates are aldol and Claisen condensations as well as Michael additions. Some examples of the Wadsworth-Emmons reactions have been also published. [Pg.64]

Yamato has also extended this carbocyclic cyclization reaction to the synthesis of substituted carbazoles such as 17 by refluxing a solution of 2,2 -dIamlnobiphenyls (16) in 4-ferf-butyl toluene with a stoichiometric amount ofNafion-H (100% w/w).This cyclization appears to be significantly slower than the related cyclization... [Pg.509]

Intramolecular condensation reactions to generate six-membered carbocycles are mentioned in section 1.12, the polyene cyclization in section 1.15. [Pg.87]

A two-step synthesis of indoles from o-nitrobenzaldehydes proceeds by condensation with nitromcthanc followed by reductive cyclization. Like the Leim-gruber Batcho method, the principal application of the reaction is to indoles with only carbocyclic substituents. The forniation of the o,p-dinitrostyrenes is usually done under classical Henry condensation conditions but KF/18-crown-6 in propanol was found to be an advantageous reaction medium for acetoxy-substituted compounds[1]. The o,p-dinitrostyrenes can also be obtained by nitration of p-nitrostyrenes[2]. [Pg.11]

Rudisill and Stille developed a two-step procedure in which 2-bromo-or 2-trifluoromethanesulfonyloxyacetanilides were coupled with tri-n-butyl-stannylacetylenes in the presence of Pd(PPh3)4.[l], Cyclization was then effected with PdCl2(CH3CN)2. The conditions are compatible with a variety of carbocyclic substituents so the procedure can provide 2-substituted indoles with carbocyclic substituents. The reported yield ranges from 40% to 97% for the coupling and from 40% to 82% for cyclization. [Pg.21]

Indoles are usually constructed from aromatic nitrogen compounds by formation of the pyrrole ring as has been the case for all of the synthetic methods discussed in the preceding chapters. Recently, methods for construction of the carbocyclic ring from pyrrole derivatives have received more attention. Scheme 8.1 illustrates some of the potential disconnections. In paths a and b, the syntheses involve construction of a mono-substituted pyrrole with a substituent at C2 or C3 which is capable of cyclization, usually by electrophilic substitution. Paths c and d involve Diels-Alder reactions of 2- or 3-vinyl-pyrroles. While such reactions lead to tetrahydro or dihydroindoles (the latter from acetylenic dienophiles) the adducts can be readily aromatized. Path e represents a category Iley cyclization based on 2 -I- 4 cycloadditions of pyrrole-2,3-quinodimcthane intermediates. [Pg.79]

At higher temperatures the mixture of 10 and methyl vinyl ketone yields the 1,4-carbocyclic compound as described previously. Methyl isopropenyl ketone (5), ethyl acetylacrylate (d), 2-cyclohexenone (21), and 1-acetyl-1-cyclohexene (22) also undergo this type of cyclization reaction with enamines at higher temperatures. This cycloalkylation reaction occurs with enamines made of strongly basic amines such as pyrrolidine, but the less reactive morpholine enamine combines with methyl vinyl ketone to give only a simple alkylated product (7). Chlorovinyl ketones yield pyrans when allowed to react with the enamines of either alicyclic ketones or aldehydes (23). [Pg.216]

Annelation of carbocycle to heterocycle and cyclizations with simultaneous formation of carbo- and heterocyclic fragments 98JCS(P1)983. [Pg.213]

An unusual cyclization, which results in carbocycles rather than heterocycles, was described in (69JCS2453). The reaction between o-iodobenzamides and copper phenylacetylides in pyridine leads to indanone (74%) rather than tolane (Scheme 124). [Pg.60]

The biomimetic approach to total synthesis draws inspiration from the enzyme-catalyzed conversion of squalene oxide (2) to lanosterol (3) (through polyolefinic cyclization and subsequent rearrangement), a biosynthetic precursor of cholesterol, and the related conversion of squalene oxide (2) to the plant triterpenoid dammaradienol (4) (see Scheme la).3 The dramatic productivity of these enzyme-mediated transformations is obvious in one impressive step, squalene oxide (2), a molecule harboring only a single asymmetric carbon atom, is converted into a stereochemically complex polycyclic framework in a manner that is stereospecific. In both cases, four carbocyclic rings are created at the expense of a single oxirane ring. [Pg.83]

Furthermore, intramolecular cyclization of acyclic chiral imines, in which the imine and the enone groups are separated by alkyl chains, yield optically active cyclohexane and cyclopentane derivatives. /ra .v-l,2-Disubstitutcd carbocyclic compounds are exclusively or predominantly formed with diastereomeric ratios in the range 80 20 100 0, strongly dependent on the conditions used to induce cyclization, i.e. heat, pressure or Lewis acid (MgBr2) catalysis227. [Pg.983]

The majority of sequential radical reactions deal with cyclizations as the key steps. The constructions of carbocycles, oxygen, and nitrogen heterocycles using (TMSlsSiH as a mediator are many and represents the expansion and importance of these synthetic approaches. For example, Nicolaou and coworkers found that (TMSlsSiH serves as a superior reagent in the radical-based approach toward the synthesis of azadirachtin, an antifeedant agent currently used as an insecticide, and in other related systems. ° ° Here below we collected a number of reactions mostly from the recent work in the area of intramolecular reactions. [Pg.139]

It was also of interest to apply such lOOC reactions to formation of carbocyclic rings. Oxime olefins 230 a-e, formed in good yield via reaction of 229 with 0-silyl-a-bromoaldoximes 228 in the presence of F ions, cyclized in a sealed tube at 190 °C to provide 231 a-e (Eq. 24, Table 22) [63]. Reduction of 231a provided amino alcohol 232 a in 68% yield. Amino alcohol 232 e was converted stereo-specifically to the fused -lactam 233. [Pg.34]

Hydrosilylation of dienes accompanied by cyclization is emerging as a potential route to the synthesis of functionalized carbocycles. However, the utility of cycliza-tion/hydrosilylation has been Umited because of the absence of an asymmetric protocol. One example of asymmetric cycUzation/hydrosilylation has been reported very recently using a chiral pyridine-oxazoUne ligand instead of 1,10-phenanthroline of the cationic palladium complex (53) [60]. As shown in Scheme 3-21, the pyridine-oxazoUne Ugand is more effective than the bisoxazoUne ligand in this asymmetric cyclization/hydrosilylation of a 1,6-diene. [Pg.86]

Ziegler and Saprong described a stoichiometric cyclization onto an alkyne for the synthesis of the carbocyclic core of entecavir from diacetone glucose. Inverse addition was required to minimize deoxygenation. The highly diastereoselective reaction is tolerant to silylethers [101]. [Pg.51]

The following syntheses of five-membered carbocyclic systems involve radical-induced epoxide fragmentation with radical translocation and cyclization. The resulting bicyclic alcohols are formed as a mixture of two epimeric esters with cw-fused rings.[71]... [Pg.354]

Moreover, the reaction with Y = OCH3 and the stereochemical control of analogous hex-5-enyl radical cyclizations has also been studied. This method constitutes part of a synthetic route from carbohydrates to optically active carbocycles.[74],[75]... [Pg.357]

Finally, a carbocyclic ring formation initiated by a keteniminium cyclization is depicted in Scheme 1.8 [6]. In the presence of triflic anhydride and DTBMP, pyrrolidine amide 1-20 was converted into the keteniminium ion 1-22, traversing inter-... [Pg.14]

The tandem-Knoevenagel-ene reaction is a powerful tool to synthesize five-and six-membered carbocycles.2 5 The process is exemplified by the diastereoselective synthesis of 4a. Compound 4a has been obtained In both enantiomeric forms and as a racemate according to the procedure described here. The sequence includes the Knoevenagel reaction of citronellal, 1, and dimethyl malonate, 2, followed by the intramolecular ene cyclization of the chiral 1,7-diene 3 to yield the trans 1,2-disubstituted products 4a and 4b. Whereas the thermal cyclization of 3 at 160°C provides 4a and 4 b in a ratio of only 89.7 10.3, the Lewis acid... [Pg.87]

Watanabe reports a new method for the direct conversion of o-choroacetaldehyde N,N-disubstituted hydrazones into 1-aminoindole derivatives 93 by palladium-catalyzed intramolecular ring closure of 92 in the presence of P Bu3 or the bisferrocenyl ligand 94 <00AG(E)2501>. When X = Cl, this cyclizative process can be coupled with other Pd-catalyzed processes with nucleophilic reagents (e.g., amines, azoles, aryl boronic acids) so as to furnish indole derivatives with substituents on the carbocyclic ring. [Pg.118]

This alkylation reaction can be applied to intramolecular alkylation affording cyclic products, as shown in Equations (19)-(21). The reaction of 2-vinylpyridines with 1,5- or 1,6-dienes results in the formation of five- or six-membered carbocycles with good efficiency.20,20a,20b In addition to pyridine functionality, oxozole and imidazole rings can be applied to this intramolecular cyclization. When the reaction is conducted in the presence of a monodentate chiral ferrocenylphosphine and [RhCl(coe)2]2, enantiomerically enriched carbocycles are obtained. A similar type of intramolecular cyclization is applied to TV-heterocycles. The microwave irradiation strongly... [Pg.217]

The borostannylation of an enyne has also been reported by Tanaka to proceed in a high yield (Scheme 71).273 The mechanism of this cyclization has not been investigated in detail, but the insertion of the alkyne takes place preferentially into the Pd-B bond over the Pd-Sn bond. Then, the addition of the vinylpalladium 279 to the alkene moiety followed by reductive elimination furnished the cycloadduct 278. However, Tanaka does not exclude a palladacycle intermediate. Similarly, a borylsilylative carbocyclization has also been reported by Tanaka.274... [Pg.334]

Another approach is based on the palladium-catalyzed intramolecular carbocyclization of the allylic acetate moiety with the alkene moiety (Scheme 96). After the formation of a 7t-allylpalladium complex, with the first double bond the intramolecular carbometallation of the second double bond occurs to form a new C-C bond. The fate of the resulting alkylpalladium complex 393 depends on the possiblity of /3-elimination. If /3-elimination is possible, it generates a metallated hydride and furnishes the cycloadduct 394. This cyclization could be viewed as a pallada-ene reaction, in which palladium replaces the hydrogen atom of the allylic moiety.231... [Pg.348]

Feringa and co-workers described the tandem addition-aldol cyclization protocol leading to the formation of 6,6-, 6,7-, and 6,8-annulated bicyclic systems (Scheme 68).39 Using Cu(n)-29 as catalyst and functionalized organozinc reagents as nucleophiles, the conjugate addition reaction followed by aldol cyclization can offer highly enantioselec-tive annulation products (up to 98% ee). This method can be used in the synthesis of carbocyclic compounds, such as steroids, terpenes, and other natural products. [Pg.397]


See other pages where Carbocyclizations cyclizations is mentioned: [Pg.8]    [Pg.11]    [Pg.210]    [Pg.150]    [Pg.293]    [Pg.115]    [Pg.720]    [Pg.84]    [Pg.22]    [Pg.123]    [Pg.648]    [Pg.371]    [Pg.12]    [Pg.12]    [Pg.14]    [Pg.95]    [Pg.247]    [Pg.366]    [Pg.243]    [Pg.361]    [Pg.444]    [Pg.327]    [Pg.353]    [Pg.358]   
See also in sourсe #XX -- [ Pg.259 ]




SEARCH



Alkyl radicals carbocycle formation via cyclization

Cyclization Ferrier carbocyclization

Cyclization carbocyclization

Cyclization carbocyclization

Radical cyclization carbocyclics

Radical cyclizations carbocyclization

© 2024 chempedia.info