Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbocation kinetics

This stabilization has been shown to be primarily a delocalization effect by demonstrating a strong dependence on the dihedral angle between the Si—C bond and the empty p orbital of the carbocation. Kinetic rate enhancements of about 1012, 0, and 104 were found for compounds with angles of 180°, 90°, and 0°, respectively. This is consistent with a hyperconjugation mechanism and with analyses of orbital overlap that show considerably stronger overlap for the anti (180°) than syn (0°) orientations. ... [Pg.307]

When using a cation source in conjunction with a Friedel-Crafts acid the concentration of growing centers is most often difficult to measure and remains unknown. By the use of stable carbocation salts (for instance trityl and tropyhum hexachloroantimonate) the uncertainty of the concentration of initiating cations is eliminated. Due to the highly reproducible rates, stable carbocation salts have been used in kinetic studies. Their use, however, is limited to cationicaHy fairly reactive monomers (eg, A/-vinylcarbazole, -methoxystyrene, alkyl vinyl ethers) since they are too stable and therefore ineffective initiators of less reactive monomers, such as isobutylene, styrene, and dienes. [Pg.245]

Stabilization of a carbocation intermediate by benzylic conjugation, as in the 1-phenylethyl system shown in entry 8, leads to substitution with diminished stereosped-ficity. A thorough analysis of stereochemical, kinetic, and isotope effect data on solvolysis reactions of 1-phenylethyl chloride has been carried out. The system has been analyzed in terms of the fate of the intimate ion-pair and solvent-separated ion-pair intermediates. From this analysis, it has been estimated that for every 100 molecules of 1-phenylethyl chloride that undergo ionization to an intimate ion pair (in trifluoroethanol), 80 return to starting material of retained configuration, 7 return to inverted starting material, and 13 go on to the solvent-separated ion pair. [Pg.306]

It is not difficult to incorporate this result into the general mechanism for hydrogen halide additions. These products are formed as the result of solvent competing with halide ion as the nucleophilic component in the addition. Solvent addition can occur via a concerted mechanism or by capture of a carbocation intermediate. Addition of a halide salt increases the likelihood of capture of a carbocation intermediate by halide ion. The effect of added halide salt can be detected kinetically. For example, the presence of tetramethylammonium... [Pg.355]

Even though the rearrangements suggest that discrete carbocation intermediates are involved, these reactions frequently show kinetics consistent with the presence of at least two hydrogen chloride molecules in the rate-determining transition state. A termolecular mechanism in which the second Itydrogen chloride molecule assists in the ionization of the electrophile has been suggested. ... [Pg.356]

The kinetics of this reaction are second-order, as would be expected for the formation of a stable carbocation by an Adg2 mechanism. ... [Pg.357]

The allylic carbocation resulting from protonation of the center carbon might seem the obvious choice, but, in fact, the kinetically favored protonation leads to the vinyl cation... [Pg.376]

All these kinetic results can be accommodated by a general mechanism that incorporates the following fundamental components (1) complexation of the alkylating agent and the Lewis acid (2) electrophilic attack on the aromatic substrate to form the a-complex and (3) deprotonation. In many systems, there m be an ionization of the complex to yield a discrete carbocation. This step accounts for the fact that rearrangement of the alkyl group is frequently observed during Friedel-Crafts alkylation. [Pg.581]

Scheme 10. Mechanislic possibililies for PF condensalion. Mechanism a involves an SN2-like attack of a phenolic ring on a methylol. This attack would be face-on. Such a mechanism is necessarily second-order. Mechanism b involves formation of a quinone methide intermediate and should be Hrst-order. The quinone methide should react with any nucleophile and should show ethers through both the phenolic and hydroxymethyl oxygens. Reaction c would not be likely in an alkaline solution and is probably illustrative of the mechanism for novolac condensation. The slow step should be formation of the benzyl carbocation. Therefore, this should be a first-order reaction also. Though carbocation formation responds to proton concentration, the effects of acidity will not usually be seen in the reaction kinetics in a given experiment because proton concentration will not vary. Scheme 10. Mechanislic possibililies for PF condensalion. Mechanism a involves an SN2-like attack of a phenolic ring on a methylol. This attack would be face-on. Such a mechanism is necessarily second-order. Mechanism b involves formation of a quinone methide intermediate and should be Hrst-order. The quinone methide should react with any nucleophile and should show ethers through both the phenolic and hydroxymethyl oxygens. Reaction c would not be likely in an alkaline solution and is probably illustrative of the mechanism for novolac condensation. The slow step should be formation of the benzyl carbocation. Therefore, this should be a first-order reaction also. Though carbocation formation responds to proton concentration, the effects of acidity will not usually be seen in the reaction kinetics in a given experiment because proton concentration will not vary.
The first step, which is rate determining, is an ionization to a carbocation (carbonium ion in earlier terminology) intermediate, which reacts with the nucleophile in the second step. Because the transition state for the rate-determining step includes R-X but not Y , the reaction is unimolecular and is labeled S l. First-order kinetics are involved, with the rate being independent of the nucleophile identity and concentration. [Pg.427]

DFT molecular dynamics simulations were used to investigate the kinetics of the chemical reactions that occur during the induction phase of acid-catalyzed polymerization of 205 [97JA7218]. These calculations support the experimental finding that the induction phase is characterized by the protolysis of 205 followed by a rapid decomposition into two formaldehyde molecules plus a methylenic carbocation (Scheme 135). For the second phase of the polymerization process, a reaction of the protonated 1,3,5-trioxane 208 with formaldehyde yielding 1,3,5,7-tetroxane 209 is discussed (Scheme 136). [Pg.82]

The S il reaction occurs when the substrate spontaneously dissociates to a carbocation in a slow rate-limiting step, followed by a rapid reaction with the nucleophile. As a result, SN1 reactions are kinetically first-order and take place with racemization of configuration at the carbon atom. They are most favored for tertiary substrates. Both S l and S 2 reactions occur in biological pathways, although the leaving group is typically a diphosphate ion rather than a halide. [Pg.397]

In the El reaction, C-X bond-breaking occurs first. The substrate dissociates to yield a carbocation in the slow rate-limiting step before losing H+ from an adjacent carbon in a second step. The reaction shows first-order kinetics and no deuterium isotope effect and occurs when a tertiary substrate reacts in polar, nonbasic solution. [Pg.397]

Conjugated dienes undergo several reactions not observed for nonconjugated dienes. One is the 1,4-addition of electrophiles. When a conjugated diene is treated with an electrophile such as HCl, 1,2- and 1,4-addition products are formed. Both are formed from the same resonance-stabilized allylic carbocation intermediate and are produced in varying amounts depending on the reaction conditions. The L,2 adduct is usually formed faster and is said to be the product of kinetic control. The 1,4 adduct is usually more stable and is said to be the product of thermodynamic control. [Pg.507]

Like the kinetic evidence, the stereochemical evidence for the SnI mechanism is less clear-cut than it is for the Sn2 mechanism. If there is a free carbocation, it is planar (p. 224), and the nucleophile should attack with equal facility from either side of the plane, resulting in complete racemization. Although many first-order substitutions do give complete racemization, many others do not. Typically there is 5-20% inversion, though in a few cases, a small amount of retention of configuration has been found. These and other results have led to the conclusion that in many SnI reactions at least some of the products are not formed from free carbocations but rather from ion pairs. According to this concept," SnI reactions proceed in this manner ... [Pg.397]

Intermodular Alkylation by Carbocations. The formation of carbon-carbon bonds by electrophilic attack on the ir system is a very important reaction in aromatic chemistry, with both Friedel-Crafts alkylation and acylation following this pattern. These reactions are discussed in Chapter 11. There also are useful reactions in which carbon-carbon bond formation results from electrophilic attack by a carbocation on an alkene. The reaction of a carbocation with an alkene to form a new carbon-carbon bond is both kinetically accessible and thermodynamically favorable. [Pg.862]

The kinetics of deuterium isotope exchange between diphenyl phosphine and t-butylthiol have been studied by H n.m.r. spectroscopy.274 A negative temperature coefficient was observed for the reaction of a perf1uoroalky1 phosphite with a fluorinated aldehyde.275 The kinetics for the reaction of alcohols with phosphoryl trichloride bore strong similarities to those of carboxylic acid derivatives.276 An interesting report desribed the solvolysis of ary 1 hydroxymethyl-phosphonates. It was shown that a phosphoryl group does not prevent carbocation formation on an immediately adjacent carbon atom.277... [Pg.416]

Figure 13.10 A schematic free-energy versus reaction coordinate diagram for the 1,2 and 1,4 addition of hbr to 1,3-butadiene. An allylic carbocation is common to both pathways. The energy barrier for attack of bromide on the allylic cation to form the 1,2-addition product is less than that to form the 1,4-addition product. The 1,2-addition product is kinetically favored. The 1,4-addition product is more stable, and so it is the thermodynamically favored product. Figure 13.10 A schematic free-energy versus reaction coordinate diagram for the 1,2 and 1,4 addition of hbr to 1,3-butadiene. An allylic carbocation is common to both pathways. The energy barrier for attack of bromide on the allylic cation to form the 1,2-addition product is less than that to form the 1,4-addition product. The 1,2-addition product is kinetically favored. The 1,4-addition product is more stable, and so it is the thermodynamically favored product.
In this chapter we review published results of studies of the kinetics and products of stepwise nucleophilic substitution and elimination reactions of alkyl derivatives, and we present a small amount of unpublished data from our laboratory. Our review of the literature is selective rather than comprehensive, and focuses on work that provides interesting insight into the factors that control the rate constant ratio ks/kp for partitioning of carbocations, and that provides an understanding of how the absolute rate constants ks and kp that constitute this ratio change with changing carbocation structure. [Pg.69]

Kinetic studies of stepwise hydration reactions of aikenes. This work has shown that carbocations with labile jff-CH bond(s) that are stabilized by an a-amino group,35-37 or by two a-thiol groups38 0 undergo preferential deprotonation to form the products of an elimination reaction (kp > ks, Scheme 1). [Pg.72]

Fig. 4 Free energy reaction coordinate profiles that illustrate a change in the relative kinetic barriers for partitioning of carbocations between nucleophilic addition of solvent and deprotonation resulting from a change in the curvature of the potential energy surface for the nucleophile addition reaction. This would correspond to an increase in the intrinsic barrier for the thermoneutral carbocation-nucleophile addition reaction. Fig. 4 Free energy reaction coordinate profiles that illustrate a change in the relative kinetic barriers for partitioning of carbocations between nucleophilic addition of solvent and deprotonation resulting from a change in the curvature of the potential energy surface for the nucleophile addition reaction. This would correspond to an increase in the intrinsic barrier for the thermoneutral carbocation-nucleophile addition reaction.
The results described in this review provide support for the following generalizations about the influence of thermodynamics and intrinsic kinetic barriers on the partitioning of carbocations between nucleophilic addition of aqueous solvents to form a tetrahedral adduct (ks) and proton transfer to these solvents to form an alkene (kp). [Pg.110]


See other pages where Carbocation kinetics is mentioned: [Pg.672]    [Pg.256]    [Pg.672]    [Pg.256]    [Pg.74]    [Pg.75]    [Pg.140]    [Pg.163]    [Pg.223]    [Pg.273]    [Pg.362]    [Pg.1295]    [Pg.1315]    [Pg.804]    [Pg.170]    [Pg.102]    [Pg.424]    [Pg.473]    [Pg.711]    [Pg.974]    [Pg.537]    [Pg.9]    [Pg.49]    [Pg.352]    [Pg.167]    [Pg.21]    [Pg.101]   
See also in sourсe #XX -- [ Pg.161 ]




SEARCH



© 2024 chempedia.info