Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbenium ions alkylation

The alkylate contains a mixture of isoparaffins, ranging from pentanes to decanes and higher, regardless of the olefins used. The dominant paraffin in the product is 2,2,4-trimethylpentane, also called isooctane. The reaction involves methide-ion transfer and carbenium-ion chain reaction, which is cataly2ed by strong acid. [Pg.370]

BF3-Et20, NaCNBHs, THF, reflux 4-24 h, 65-98% yield. Functional groups such aryl ketones and nitro compounds are reduced and electron-rich phenols tend to be alkylated with the released benzyl carbenium ion. The use of BF3 Et20 and triethylsilane as a cation scavenger is also effective." ... [Pg.90]

The synthesis of an alkylated aromatic compound 3 by reaction of an aromatic substrate 1 with an alkyl halide 2, catalyzed by a Lewis acid, is called the Friedel-Crafts alkylation This method is closely related to the Friedel-Crafts acylation. Instead of the alkyl halide, an alcohol or alkene can be used as reactant for the aromatic substrate under Friedel-Crafts conditions. The general principle is the intermediate formation of a carbenium ion species, which is capable of reacting as the electrophile in an electrophilic aromatic substitution reaction. [Pg.120]

The initial step is the coordination of the alkyl halide 2 to the Lewis acid to give a complex 4. The polar complex 4 can react as electrophilic agent. In cases where the group R can form a stable carbenium ion, e.g. a tert-buiyX cation, this may then act as the electrophile instead. The extent of polarization or even cleavage of the R-X bond depends on the structure of R as well as the Lewis acid used. The addition of carbenium ion species to the aromatic reactant, e.g. benzene 1, leads to formation of a cr-complex, e.g. the cyclohexadienyl cation 6, from which the aromatic system is reconstituted by loss of a proton ... [Pg.120]

The alkylation with alkenes can be catalyzed by protons. The carbon-carbon double bond of the alkene is protonated according to Markow nikojfs rule, to give a carbenium ion 10, which then reacts by the above mechanism to yield the alkylated aromatic product 11 ... [Pg.121]

The radical mechanism is supported by a number of findings for instance, when the electrolysis is carried out in the presence of an olefin, the radicals add to the olefinic double bond styrene does polymerize under those conditions. Side products can be formed by further oxidation of the alkyl radical 2 to an intermediate carbenium ion 5, which then can react with water to yield an alcohol 6, or with an alcohol to yield an ether 7 ... [Pg.183]

Skeletal rearrangements of carbenium ion species 2, that involve nucleophilic 1,2-migrations of alkyl groups, are called Wagner-Meerwein rearrangements... [Pg.285]

In the case of an appropriate substrate structure, the carbenium ion species can undergo a 1,2-alkyl shift, thus generating a different carbenium ion—e.g. 4. The driving force for such an alkyl migration is the formation of a more stable carbenium ion, which in turn may undergo further rearrangement or react to a final product by one of the pathways mentioned above—e.g. by loss of a proton to yield an alkene 3 ... [Pg.285]

The leaving group doesn t have to be a water molecule any group or substituent which upon cleavage from the carbon skeleton under appropriate reaction conditions leaves behind a carbenium ion—e.g. a halogen substituent—will suffice. The other substituents can be hydrogen, alkyl or aryl. ... [Pg.286]

The stability of carbocations depends on the nature of alkyl groups attached to the positive charge. The relative stability of carbenium ions is as follows [2] with tertiary ions being the most stable ... [Pg.132]

Alkylation of tetrapropylene follows over a tertiary carbenium ion, so that the benzene ring is always connected to a quaternary carbon atom (2) ... [Pg.43]

All alkyl ions tested demonstrate a comparable behaviour independent of the sign of their charges. The decrease of the reaction enthalpies AH (11) with the change from the methyl to the ethyl cation (AAH (ll) = 165 kJ mol-1) and from the ethyl to the but-2-enyl cation (AAH°(11) = 117 kJ mol-1) corresponds to the increase of stability of these carbenium ions, which are expressed by the difference of their heats of formation (AAH f = —118 and AAHj = —42 kJ mol-1 90)) and of their hydride ion affinity (AHIA = 176 and 126 kJ mol-1 91)), respectively. [Pg.199]

A mixture of water/pyridine appears to be the solvent of choice to aid carbenium ion formation [246]. In the Hofer-Moest reaction the formation of alcohols is optimized by adding alkali bicarbonates, sulfates [39] or perchlorates. In methanol solution the presence of a small amount of sodium perchlorate shifts the decarboxylation totally to the carbenium ion pathway [31]. The structure of the carboxylate can also support non-Kolbe electrolysis. By comparing the products of the electrolysis of different carboxylates with the ionization potentials of the corresponding radicals one can draw the conclusion that alkyl radicals with gas phase ionization potentials smaller than 8 e V should be oxidized to carbenium ions [8 c] in the course of Kolbe electrolysis. This gives some indication in which cases preferential carbenium ion formation or radical dimerization is to be expected. Thus a-alkyl, cycloalkyl [, ... [Pg.116]

The various carbenium ions /erf-alkyl, bridgehead-, norbornyl-, allyl-, benzyl- or cyclopropylcarbinyl-cations, which are assumed to be intermediates in these decarboxylations are compiled in ref. [293]. [Pg.124]

Innumerable reactions occur in acid catalyzed hydrocarbon conversion processes. These reactions can be classified into a limited number of reaction families such as (de)-protonation, alkyl shift, P-scission,... Within such a reaction family, the rate coefficient is assumed to depend on the type, n or m cfr. Eq. (1), of the carbenium ions involved as reactant and/or product, secondary or tertiary. The only other structural feature of the reactive moiety which needs to be accounted for is the symmetry number. The ratio of the symmetry number of the... [Pg.53]

The reactions proceed via carbenium ions in a chain mechanism, initiated by the reaction between an olefin and an acid to C-C -C, which then reacts with iso-butane to give C-C C)-C. This carbenium ion is the central species in propagation steps to alkylated products such as 2,2-dimethylpentane and related products (Fig. 9.14). [Pg.369]

Figure 9.14. Alkylation of isobutane and propene is a chain reaction with the isobutene carbenium ion as the chain carrier (indicated... Figure 9.14. Alkylation of isobutane and propene is a chain reaction with the isobutene carbenium ion as the chain carrier (indicated...

See other pages where Carbenium ions alkylation is mentioned: [Pg.423]    [Pg.423]    [Pg.79]    [Pg.182]    [Pg.314]    [Pg.375]    [Pg.201]    [Pg.111]    [Pg.163]    [Pg.164]    [Pg.480]    [Pg.163]    [Pg.123]    [Pg.286]    [Pg.74]    [Pg.91]    [Pg.673]    [Pg.685]    [Pg.126]    [Pg.66]    [Pg.409]    [Pg.415]    [Pg.107]    [Pg.101]    [Pg.67]    [Pg.148]    [Pg.376]    [Pg.54]    [Pg.6]    [Pg.577]    [Pg.673]    [Pg.685]    [Pg.51]    [Pg.53]   
See also in sourсe #XX -- [ Pg.320 , Pg.324 ]




SEARCH



Alkyl carbenium ions

Carbenium

Carbenium ions

© 2024 chempedia.info