Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbenes intermolecular reactions

An intermolecular carbenoid reaction followed by intramolecular displacement of acetate gives the clavulanic acid derivative (112) in one step from 4-acetoxyazetidin-2-one (91) (80CC1257). Carbene-induced reactions of penicillins and cephalosporins have been reviewed (75S547, 78T1731). [Pg.254]

Acyclic diene molecules are capable of undergoing intramolecular and intermolec-ular reactions in the presence of certain transition metal catalysts molybdenum alkylidene and ruthenium carbene complexes, for example [50, 51]. The intramolecular reaction, called ring-closing olefin metathesis (RCM), affords cyclic compounds, while the intermolecular reaction, called acyclic diene metathesis (ADMET) polymerization, provides oligomers and polymers. Alteration of the dilution of the reaction mixture can to some extent control the intrinsic competition between RCM and ADMET. [Pg.328]

Triplet Carbene Intermolecular Hydrogen Abstraction Reactions 434... [Pg.415]

These reactions have very low activation energies when the intermediate is a free carbene. Intermolecular insertion reactions are inherently nonselective. The course of intramolecular reactions is frequently controlled by the proximity of the reacting groups.113 Carbene intermediates can also be involved in rearrangement reactions. In the sections that follow we also consider a number of rearrangement reactions that probably do not involve carbene intermediates, but lead to transformations that correspond to those of carbenes. [Pg.905]

Owing to the high reactivity of the intermediates involved, intermolecular carbene insertion reactions are not very selective. The distribution of products from the photolysis of diazomethane in heptane, for example, is almost exactly that expected on a statistical basis.211... [Pg.934]

The most common rearrangement reaction of alkyl carbenes is the shift of hydrogen, generating an alkene. This mode of stabilization predominates to the exclusion of most intermolecular reactions of aliphatic carbenes and often competes with intramolecular insertion reactions. For example, the carbene generated by decomposition of the tosylhydrazone of 2-methylcyclohexanone gives mainly 1- and 3-methylcyclohexene rather than the intramolecular insertion product. [Pg.940]

Rh2(OAc)4 has become the catalyst of choice for insertion of carbene moieties into the N—H bond of (3-lactams. Two cases of intermolecular reaction have been reported. The carbene unit derived from alkyl aryldiazoacetates 322 seems to be inserted only into the ring N—H bond of 323 246). Similarly, N-malonyl- 3-lactams 327 are available from diazomalonic esters 325 and (3-lactams 326 297). If, however, the acetate function in 326 is replaced by an alkylthio or arylthio group, C/S insertion rather than N/H insertion takes place (see Sect. 7.2). Reaction of ethyl diazoacetoacetate 57b with 328 also yields an N/H insertion product (329) 298>, rather than ethyl l-aza-4-oxa-3-methyl-7-oxabicyclo[3.2.0]hex-2-ene-2-earboxylate, as had been claimed before 299). [Pg.202]

Minima in Ti are usually above the So hypersurface, but in some cases, below it (ground state triplet species). In the latter case, the photochemical process proper is over once relaxation into the minimum occurs, although under most conditions further ground-state chemistry is bound to follow, e.g., intermolecular reactions of triplet carbene. On the other hand, if the molecule ends up in a minimum in Ti which lies above So, radiative or non-radiative return to So occurs similarly as from a minimum in Si. However, both of these modes of return are slowed down considerably in the Ti ->-So process, because of its spin-forbidden nature, at least in molecules containing light atoms, and there will usually be time for vibrational motions to reach thermal equilibrium. One can therefore not expect funnels in the Ti surface, at least not in light-atom molecules. [Pg.20]

The pyridine ylide method also allows determination of the rate constants for the intermolecular reactions of carbenes with alkenes, alcohols, or other carbene... [Pg.55]

Chiral dirhodium(II) catalysts with carboxylate or carboxamidate ligands have recently been developed to take advantage of their versatility in metal carbene transformation, and these have now become the catalysts of choice for cyclopropanation. Chiral carboxylate ligands 195,103 196,104 and 197105 have been used for tetrasubstitution around a dirhodium(II) core. However, the enantioselectivity in intermolecular reactions with simple ketenes is marginal. [Pg.316]

Few examples of preparatively useful intermolecular C-H insertions of electrophilic carbene complexes have been reported. Because of the high reactivity of complexes capable of inserting into C-H bonds, the intermolecular reaction is limited to simple substrates (Table 4.9). From the results reported to date it seems that cycloalkanes and electron-rich heteroaromatics are suitable substrates for intermolecular alkylation by carbene complexes [1165]. The examples in Table 4.9 show that intermolecular C-H insertion enables highly convergent syntheses. Elaborate structures can be constructed in a single step from readily available starting materials. Enantioselective, intermolecular C-H insertions with simple cycloalkenes can be realized with up to 93% ee by use of enantiomerically pure rhodium(II) carboxylates [1093]. [Pg.189]

The intermolecular reaction of imines with acceptor-substituted carbene complexes generally leads to the formation of azomethine ylides. These can undergo several types of transformation, such as ring closure to aziridines [1242-1245], 1,3-dipolar cycloadditions [1133,1243,1246-1248], or different types of rearrangement (Figure 4.9). [Pg.202]

Many of the limitations of C—C bond formation by C —H insertion outlined for intermolecular reactions (Section 1.2.1.) can be overcome by making the reaction intramolecular. Thus, hydrogen atom abstraction followed by intramolecular radical-radical coupling or radical addition to an alkene are increasingly popular processes. Two-electron carbene insertions, either thermal or transition metal catalyzed, have also been used extensively. In either case, ring construction involves net C—C bond formation at a previously unactivated C-H site. [Pg.1129]

At the opposite end of the philicity spectrum, nucleophilic carbenes have proven useful in synthesis. Warkentin" pioneered the thermolysis of oxadiazolines as precursors for (CH30)2C and related dioxacarbenes (Scheme 7.3). Dimethoxycarbene generated from an oxadiazoline undergoes a variety of intermolecular reactions." One example is the ring enlargement of strained cyclic ketones, for example, cyclo-butanone. In this reaction, the nucleophilic carbene initiates the ring expansion by... [Pg.283]

At the beginning of the new millennium, Hashmi et al. presented a broad research study on both intramolecular and intermolecular nucleophilic addition to alkynes and olefins [18]. One of the areas covered by these authors was the isomerization of co-alkynylfuran to phenols [19]. After that, Echavarren and coworkers identified the involvement of gold-carbene species in this type of process, thus opening a new branch in gold chemistry [20]. And subsequently, Yang and He demonstrated the initial activation of aryl —H bonds in the intermolecular reaction of electron-rich arenes with O-nucleophiles [21, 22]. [Pg.431]

Cyclopropane formation occurs from reactions between diazo compounds and alkenes, catalyzed by a wide variety of transition-metal compounds [7-9], that involve the addition of a carbene entity to a C-C double bond. This transformation is stereospecific and generally occurs with electron-rich alkenes, including substituted olefins, dienes, and vinyl ethers, but not a,(J-unsaturated carbonyl compounds or nitriles [23,24], Relative reactivities portray a highly electrophilic intermediate and an early transition state for cyclopropanation reactions [15,25], accounting in part for the relative difficulty in controlling selectivity. For intermolecular reactions, the formation of geometrical isomers, regioisomers from reactions with dienes, and enantiomers must all be taken into account. [Pg.195]

Analysis of the product distributions arising from both sensitized and non-sensitized irradiation of 2-allyloxyphenyldiazo species (8) showed that the C—H insertion product and much of the cyclopropanation arise from the triplet carbene.16 For the singlet carbene, intermolecular 0—H insertion with methanol is about 50 tunes faster than intramolecular addition to the double bond, hi this system, intramolecular reactions and intersystem crossing of the triplet carbene proceed at similar rates, hi the closely related indanyl system (9), the smaller RCR angle stabilizes the singlet state relative to the triplet and the intramolecular reactivity is dominated by the singlet state.17... [Pg.222]

Cyclic amino-carbenes, in molybdenum carbonyls, 5, 457 Cyclic bis(phosphine) dichlorides, with iron carbonyls, 6, 48 Cyclic carbenes, as gold atom ligands, 2, 289 Cyclic carbometallation, zirconium complexes, 10, 276 Cyclic carbozirconation characteristics, 10, 276 intermolecular reactions, 10, 278 intramolecular reactions, 10, 278 Cyclic dinuclear ylides, and gold , 2, 276 Cyclic 1,2-diols, intramolecular coupling to, 11, 51 Cyclic enones, diastereoselective cuprate additions, 9, 515 Cyclic esters, ring-opening polymerization, via lanthanide catalysis, 4, 145 Cyclic ethers... [Pg.88]


See other pages where Carbenes intermolecular reactions is mentioned: [Pg.227]    [Pg.208]    [Pg.434]    [Pg.444]    [Pg.13]    [Pg.177]    [Pg.792]    [Pg.308]    [Pg.350]    [Pg.652]    [Pg.153]    [Pg.227]    [Pg.227]    [Pg.954]    [Pg.224]    [Pg.223]    [Pg.712]    [Pg.718]    [Pg.223]    [Pg.502]    [Pg.11]   
See also in sourсe #XX -- [ Pg.298 , Pg.299 , Pg.300 , Pg.301 ]




SEARCH



Carbene reactions

Carbenes intermolecular

Carbenes reactions

© 2024 chempedia.info