Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamics, capillary

Capillary Thermodynamics Without a Geometric Gibbs Convention... [Pg.9]

While I have given here only a few examples, it turns out that the entirety of capillary thermodynamics may be founded upon algebraic methods, resulting in a great improvement in the ease with which the capillary excess quantities may be defined and manipulated. [Pg.15]

Brunauer and co-workers [211, 212] proposed a modelless method for obtaining pore size distributions no specific capillary shape is assumed. Use is made of the general thermodynamic relationship due to Kiselev [213]... [Pg.667]

As with all thermodynamic relations, the Kelvin equation may be arrived at along several paths. Since the occurrence of capillary condensation is intimately, bound up with the curvature of a liquid meniscus, it is helpful to start out from the Young-Laplace equation, the relationship between the pressures on opposite sides of a liquid-vapour interface. [Pg.118]

In calculations of pore size from the Type IV isotherm by use of the Kelvin equation, the region of the isotherm involved is the hysteresis loop, since it is here that capillary condensation is occurring. Consequently there are two values of relative pressure for a given uptake, and the question presents itself as to what is the significance of each of the two values of r which would result from insertion of the two different values of relative pressure into Equation (3.20). Any answer to this question calls for a discussion of the origin of hysteresis, and this must be based on actual models of pore shape, since a purely thermodynamic approach cannot account for two positions of apparent equilibrium. [Pg.126]

The time is perhaps not yet ripe, however, for introducing this kind of correction into calculations of pore size distribution the analyses, whether based on classical thermodynamics or statistical mechanics are being applied to systems containing relatively small numbers of molecules where, as stressed by Everett and Haynes, the properties of matter must exhibit wide fluctuations. A fuller quantitative assessment of the situation in very fine capillaries must await the development of a thermodynamics of small systems. Meanwhile, enough is known to justify the conclusion that, at the lower end of the mesopore range, the calculated value of r is almost certain to be too low by many per cent. [Pg.154]

Reverse osmosis models can be divided into three types irreversible thermodynamics models, such as Kedem-Katchalsky and Spiegler-Kedem models nonporous or homogeneous membrane models, such as the solution—diffusion (SD), solution—diffusion—imperfection, and extended solution—diffusion models and pore models, such as the finely porous, preferential sorption—capillary flow, and surface force—pore flow models. Charged RO membrane theories can be used to describe nanofiltration membranes, which are often negatively charged. Models such as Dorman exclusion and the... [Pg.146]

Lampinen, M. J. and Toivonen, K., Application of a Thermodynamic Theory to Determine Capillary Pressure and Other Fundamental Material Properties Affecting the Drying Process, DRYING 84, Springer-Verlag, 228-244, 1984. [Pg.63]

The capillary filling of CNTs is basically and usually described using macroscopic thermodynamic approximations. For example, Dujardin et al. [10] concluded that the surface-tension threshold value for filling a CNT was 100-200... [Pg.140]

In the older theory of capillary action(1), developed by Laplace T. Young (1805), Gauss (1830), and Poisson (1831), no attention was paid to the possibility of thermal changes attending the alteration of surface at constant temperature. That such changes must exist was first demonstrated by Lord Kelvin (2) (1859), and the theory of capillarity Was developed more particularly from the thermodynamic standpoint in the masterly treatise of Willard Gibbs (8) (1876). [Pg.429]

A capillary system is said to be in a steady-state equilibrium position when the capillary forces are equal to the hydrostatic pressure force (Levich 1962). The heating of the capillary walls leads to a disturbance of the equilibrium and to a displacement of the meniscus, causing the liquid-vapor interface location to change as compared to an unheated wall. This process causes pressure differences due to capillarity and the hydrostatic pressures exiting the flow, which in turn causes the meniscus to return to the initial position. In order to realize the above-mentioned process in a continuous manner it is necessary to carry out continual heat transfer from the capillary walls to the liquid. In this case the position of the interface surface is invariable and the fluid flow is stationary. From the thermodynamical point of view the process in a heated capillary is similar to a process in a heat engine, which transforms heat into mechanical energy. [Pg.351]

Peles YP, Yarin LP, Hetsroni G (2000) Thermodynamic characteristics of two-phase flow in a heated capillary. Int J Multiphase Flow 26 1063-1093 Peles YP, Yarin LP, Hetsroni G (2001) Steady and unsteady flow in a heated micro-channels. Int J Multiphase Flow 28 1589-1616... [Pg.463]

In the case of a solution with a previously known aH+ (see below), we could determine 2°H+-.H2(iatm)> provided that a reference electrode of zero potential is available however, experiments, especially with the capillary electrometer of Lippmann, did not yield the required confirmation about the realization of such a zero reference electrode16. Later attempts to determine a single electrode potential on the basis of a thermodynamic treatment also were not successful17. For this reason, the original and most practical proposal by Nernst of assigning to the standard 1 atm hydrogen potential a value of zero at any temperature has been adopted. Thus, for F2H+ H2(iatm) we can write... [Pg.50]

Gibbs found the solution of the fundamental Equation 9.1 only for the case of moderate surfaces, for which application of the classic capillary laws was not a problem. But, the importance of the world of nanoscale objects was not as pronounced during that period as now. The problem of surface curvature has become very important for the theory of capillary phenomena after Gibbs. R.C. Tolman, F.P. Buff, J.G. Kirkwood, S. Kondo, A.I. Rusanov, RA. Kralchevski, A.W. Neimann, and many other outstanding researchers devoted their work to this field. This problem is directly related to the development of the general theory of condensed state and molecular interactions in the systems of numerous particles. The methods of statistical mechanics, thermodynamics, and other approaches of modem molecular physics were applied [11,22,23],... [Pg.266]

In membrane osmometry the two compartments of an osmometer are separated by a semi-permeable membrane only solvent molecule can penetrate through the semi-permeable membrane which is closed except for capillary tubes. The polymer solute remains confined to one side of the osmometer and the activity of the solvent is different in the two compartments. Because of the thermodynamic drive towards equilibrium a difference in liquid level in the two capillaries results. [Pg.104]

The experimental basis of sorption studies includes structural data (SANS, SAXS, USAXS), isopiestic vapor sorption isotherms,i and capillary isotherms, measured by the method of standard porosimetry. i 2-i44 Thermodynamic models for water uptake by vapor-equilibrated PEMs have been suggested by various groupThe models account for interfacial energies, elastic energies, and entropic contributions. They usually treat rate constants of interfacial water exchange and of bulk transport of water by diffusion and hydraulic permeation as empirical functions of temperature. [Pg.370]

What happens upon equilibration with liquid water instead of water vapor According to Equation (6.13), the capillary radius would go to infinity for PVP —> 1. Thus, in terms of external conditions, swelling would be thermodynamically unlimited, corresponding to the formation of an infinitely dilute aqueous solution of ionomer. However, the self-organized polymer is an effectively cross-linked elastic medium. Under liquid-equilibrated conditions, swelling is not controlled by external vapor... [Pg.378]

The first work on pKa determination by zone electrophoresis using paper strips was described by Waldron-Edward in 1965 (15). Also, Kiso et al. in 1968 showed the relationship between pH, mobility, and p/C, using a hyperbolic tangent function (16). Unfortunately, these methods had not been widely accepted because of the manual operation and lower reproducibility of the paper electrophoresis format. The automated capillary electrophoresis (CE) instrument allows rapid and accurate pKa determination. Beckers et al. showed that thermodynamic pATt, (pATf) and absolute ionic mobility values of several monovalent weak acids were determined accurately using effective mobility and activity at two pH points (17). Cai et al. reported pKa values of two monovalent weak bases and p-aminobenzoic acid (18). Cleveland et al. established the thermodynamic pKa determination method using nonlinear regression analysis for monovalent compounds (19). We derived the general equation and applied it to multivalent compounds (20). Until then, there were many reports on pKa determination by CE for cephalosporins (21), sulfonated azo-dyes (22), ropinirole and its impurities (23), cyto-kinins (24), and so on. [Pg.62]

SG Penn, ET Bergstrom, DM Goodall, JS Loran. Capillary electrophoresis with chiral selectors. Optimization of separation and determination of thermodynamic parameters for binding of ticonazole enantiomers to cyclodextrins. Anal Chem 66 2866-2873, 1994. [Pg.115]

The most important point to be noted is that as is not limited by the ratio K2/K1 and can reach infinitily high values in CE (3,4). Although Eq. (2) does not explicitly contain the binding constants of enantiomers with chiral selector, A/x and /xav are dependent on these thermodynamic quantities. Capillary electrophoresis offers several possibilities for almost unlimited enhancement of separation selectivity without any significant change of thermodynamic selectivity or recognition (3-5). [Pg.190]


See other pages where Thermodynamics, capillary is mentioned: [Pg.9]    [Pg.11]    [Pg.15]    [Pg.9]    [Pg.11]    [Pg.15]    [Pg.79]    [Pg.112]    [Pg.632]    [Pg.28]    [Pg.169]    [Pg.246]    [Pg.163]    [Pg.169]    [Pg.344]    [Pg.75]    [Pg.45]    [Pg.238]    [Pg.71]    [Pg.131]    [Pg.422]    [Pg.471]    [Pg.460]    [Pg.123]    [Pg.127]    [Pg.8]    [Pg.272]    [Pg.27]    [Pg.140]    [Pg.193]    [Pg.38]    [Pg.214]   


SEARCH



© 2024 chempedia.info