Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

By Weight

Equation (F.l) shows that each stream makes a contribution to total heat transfer area defined only by its duty, position in the composite curves, and its h value. This contribution to area means also a contribution to capital cost. If, for example, a corrosive stream requires special materials of construction, it will have a greater contribution to capital cost than a similar noncorrosive stream. If only one cost law is to be used for a network comprising mixed materials of construction, the area contribution of streams requiring special materials must somehow increase. One way this may be done is by weighting the heat transfer coefficients to reflect the cost of the material the stream requires. [Pg.447]

Generally the properties of mixtures in the ideal gas state and saturated liquids are calculated by weighting the properties of components at the same temperature and in the same state. Weighting in these cases is most often linear with respect to composition ( ), ... [Pg.109]

The pseudocritical molar volume of a mixture is obtained by weighting the... [Pg.112]

The viscosity is obtained by weighting the viscosities of each component. The recommended method is that of Bromley and Wilke (1951) ... [Pg.143]

Figure 5.9 shows an example of the efficiency of these products. The reductions of CFPP and pour point can easily attain 6 to 12°C for concentrations between 200 and 600 ppm by weight. The treatment cost is relatively low, on the order of a few hundredths of a Franc per liter of diesel fuel. In practice, a diesel fuel containing a flow improver is recognized by the large difference (more than 10°C) between the cloud point and the CFPP. [Pg.217]

The desired improvements are usually on the order of 3 to 5 points, beginning with a base of 45-48. Under these conditions between 300 and 1000 ppm by weight of additive must be used. The treating costs are acceptable, being on the order of a centime (hundredth of a French Franc) per liter. [Pg.222]

For each type of component, its relative reactivity in ozone formation was taken into account which makes it possible to characterize by weighting the behavior of the overall motor fuel under the given experimental conditions. The overall reactivity is in fact governed by a limited number of substances ethylene, isobutene, butadiene, toluene, xylenes, formaldehyde, and acetaldehyde. The fuels of most interest for reducing ozone formation are those which contribute towards minimizing emissions of the above substances. [Pg.262]

Free sulfur is rarely present in crude oils, but it can be found in suspension or dissolved in the liquid. The crude from Goldsmith (Texas, USA.) is richest in free sulfur (1% by weight for a total sulfur content of 2.17%). It could be produced by compounds in the reservoir rock by sulfate reduction (reaction 8.2). [Pg.322]

H2S is found with the reservoir gas and dissolved in the crude (< 50 ppm by weight), but it is formed during refining operations such as catalytic cracking, hydrodesulfurization, and thermal cracking or by thermal decomposition of sulfur[Pg.322]

A 1.5% by weight aqueous surfactant solution has a surface tension of 53.8 dyn/cm (or mN/m) at 20°C. (a) Calculate a, the area of surface containing one molecule. State any assumptions that must be made to make the calculation from the preceding data, (b) The additional information is now supplied that a 1.7% solution has a surface tension of 53.6 dyn/cm. If the surface-adsorbed film obeys the equation of state ir(o - 00) = kT, calculate from the combined data a value of 00, the actual area of a molecule. [Pg.93]

Fig. XV-9. Fluorescence micrograph of the stripe patterns observed in a monolayer from a mixture of PA and SP-Bi-25 (20% by weight peptide) on a buffered saline subphase at 16 C and zero surface pressure. (From Ref. 55.)... Fig. XV-9. Fluorescence micrograph of the stripe patterns observed in a monolayer from a mixture of PA and SP-Bi-25 (20% by weight peptide) on a buffered saline subphase at 16 C and zero surface pressure. (From Ref. 55.)...
Figure Bl.24.16. An example of the applieation of the PIXE teelmique using the NMP in the imaging mode. The figures show images of the eross seetion tlirough a root of the Phaseolus vulgaris L. plant. In this ease the material was seetioned, freeze-dried and mounted in vaeuiim for analysis. The seales on the right of the figures indieate the eoneentrations of the elements in ppm by weight. It is elear that the transports of the elements tlirough the root are very different, not only in the eases of the major elements Ca and K, but also in the ease of the traee element Zn. Figure Bl.24.16. An example of the applieation of the PIXE teelmique using the NMP in the imaging mode. The figures show images of the eross seetion tlirough a root of the Phaseolus vulgaris L. plant. In this ease the material was seetioned, freeze-dried and mounted in vaeuiim for analysis. The seales on the right of the figures indieate the eoneentrations of the elements in ppm by weight. It is elear that the transports of the elements tlirough the root are very different, not only in the eases of the major elements Ca and K, but also in the ease of the traee element Zn.
Oxygen occurs free in the atmosphere (21% by volume. 23 by weight). The proportion is constant over the earth s surtace it is also constant for many miles upwards, because the turbulence of the atmosphere prevents the tendency for the lighter gases, for example helium, to increase in amount at higher altitudes. [Pg.260]

Water contains 89 % by weight of oxygen, and the outer crust of the earth contains about 47% hence air, earth and sea together contain about 50% by weight of oxygen. [Pg.260]

Elamrani et al. 1996] Elamrani, S., Berry, M.B., Phillips Jr., G.N., McCammon, J.A. Study of Global Motions in Proteins by Weighted Masses Molecular Dynamics Adenylate Kinase as a Test Case. Proteins 25 (1996) 79-88 [Elcock et al. 1997] Elcock, A.H., Potter, M.J., McCammon, J.A. Application of Poisson-Boltzmann Solvation Forces to Macromolecular Simulations. In Computer Simulation of Biomoleeular Systems, Vol. 3, A.J. Wilkinson et al. eds., ESCOM Science Publishers B.V., Leiden... [Pg.76]

The factor represents the fraction by weight of the element sought (Column i) in the final compound weighed (Column 2), e.g., the weight of carbon in x g. of carbon dioxide is therefore 0 2y2yx g. [Pg.532]

Thus for every 6 2 grams of water collectedinthereceiver 10 0 grams of bromobenzene are obtained (or the distillate contains 62 per cent, by weight of bromobenzene) in spite of the fact that bromobenzene has only 119/641 of the vapour pressm of water at the boiling point of the mixture. [Pg.14]

The effect of superheated steam may be illustrated by reference to baizaldehyde, which boils at 178° at 760 mm. It distils with steam at 97-9° (Pj = 703-5 mm. and pg = 56-5 mm.) and the distillate contains 32-1 per cent, of benzaldehyde by weight. If one employs steam superheated to 133°, the vapour pressure of benzaldehyde (extrapolated from the boUing point - pressure curve) is 220 mm. hence pj = 540 (water), Pg = 220 (benzaldehyde), and... [Pg.15]

Other pairs of liquids which exhibit an upper consolute temperature are methyl alcohol - cyclohexane (C.S.T. 49 -1° critical composition 29 per cent, by weight of methyl alcohol) isopentane - phenol (63 5° 51 per cent, of isopentane) and carbon disulphide - methyl alcohol (40-5° 80 per cent, of carbon disulphide). [Pg.18]

A satisfactory bath suitable for temperatures up to about 250° may be prepared by mixing four parts by weight of 85 per cent, ortho-phosphoric acid and one part by weight of meta-phosphoric acid the mixed components should first be heated slowly to 260° and held at this temperature imtil evolution of steam and vapours has ceased. This bath is liquid at room temperatures. For temperatures up to 340°, a mixture of two parts of 85 per cent, ortho-phosphoric acid and one part of meta-phosphoric acid may be used this is solid (or very viscous) at about 20°. [Pg.59]

Absolute ethyl alcohol. Ethyl alcohol of a high degree of purity is frequently required in preparative organic chemistry. For some purposes alcohol of ca. 99 -5 per cent, purity is satisfactory this grade may be purchased (the absolute alcohol of commerce), or it may be conveniently prepared by the dehydration of rectified spirit with quicklime. Rectified spirit is the constant boiling point mixture which ethyl alcohol forms with water, and usually contains 95 6 per cent, of alcohol by weight. Wherever the term rectified spirit is used in this book, approximately 95 per cent, ethyl alcohol is to be understood. [Pg.166]

Absolute methyl alcohol. The synthetic methanol now available is suitable for most purposes without purification indeed, some manufacturers claim a purity of 99 85 per cent, with not more than 0 1 per cent, by weight of water and not more than 0 02 per cent, by weight of acetone. Frequently, however, the acetone content may be as high as 0 1 per cent, and the water content 0-5-1 per cent. [Pg.169]

This separation utilises the fact that n-butyl alcohol is soluble in 50 per cent, sulphuric acid by weight, whilst n-butyl ether is only slightly soluble. [Pg.313]

Equip a 1-litre three-necked flask with a mechanical stirrer, a separatory funnel and a thermometer. Place a solution of 47 g. of sodium cyanide (or 62 g. of potassium cyanide) in 200 ml. of water in the flask, and introduce 58 g. (73-5 ml.) of pure acetone. Add slowly from the separatory fumiel, with constant stirring, 334 g. (275 ml.) of 30 per cent, sulphuric acid by weight. Do not allow the temperature to rise above 15-20° add crushed ice, if necessary, to the mixture by momentarily removing the thermometer. After all the acid has been added continue the stirring for 15 minutes. Extract the reaction mixture with three 50 ml. portions of ether, dry the ethereal extracts with anhydrous sodium or magnesium sulphate, remove most of the ether on a water bath and distil the residue rapidly under diminished pressure. The acetone cyanohydrin passes over at 80-82°/15 mm. The yield is 62 g. [Pg.348]


See other pages where By Weight is mentioned: [Pg.229]    [Pg.20]    [Pg.90]    [Pg.155]    [Pg.158]    [Pg.164]    [Pg.277]    [Pg.293]    [Pg.190]    [Pg.232]    [Pg.320]    [Pg.93]    [Pg.94]    [Pg.400]    [Pg.474]    [Pg.1844]    [Pg.111]    [Pg.159]    [Pg.65]    [Pg.15]    [Pg.15]    [Pg.18]    [Pg.78]    [Pg.128]    [Pg.185]    [Pg.312]   
See also in sourсe #XX -- [ Pg.233 ]




SEARCH



Analysis by Weight and Volume

Apparatus for determination of molecular weight by colligative methods

Computing Optimal Weights by Linear Programming Model

Concentration by weight

Counting by weight

Crystallinity by weight

Derivation of the Equation Expressing Weight Loss by Fretting Corrosion

Determination of Molecular-Weight Distribution by Fractionation

Fractionation by molecular weight

HBX Composition (Percent by Weight)

High Molecular Weight Polyalkylene Oxide Polyols by Cationic Polymerisation

Molecular Weight by Chain Transfer

Molecular Weights by GPCSEC Sadao Mori

Molecular weight by Gel permeation chromatography

Molecular weight by mass spectrometry

Molecular weight determination by cryoscopy

Molecular weight determination by end-group analysis

Molecular weight determination by gel filtration

Molecular weight determination by gel permeation chromatography

Molecular weight determination by light scattering

Molecular weight determination by mass spectrometry

Molecular weight determination by sedimentation equilibrium

Molecular weight determination by vapor pressure osmometry

Molecular weight, by Rast camphor

Molecular weight, by Rast camphor method

Molecular weights determination by gel chromatography

Molecular weights measured by vapor

Molecular-weight determination by gel

On Atomic Weights—Elemental Properties Relationships, by Mendeleev

On Atomic Weights—Elemental Properties Relationships, by Meyer

Percent by weight to volume

Percent-by-Weight Solutions

Percent-by-weight

Percentage Composition by Weight

Percentage by weight

Weight Management by Orlistat in Obese Patients

Weight Percent of a Hydride Phase and Hydrogen by DSC

Weight by light scattering

Weight by mass

Weights of Proteins Determined by Light Scattering

© 2024 chempedia.info