Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Butyrolactones hydrogenation

BROMOHYDRINS N-Bromoacetamide. y-BUTYROLACTONES Hydrogen peroxide, basic. [Pg.589]

The conversion of primary alcohols and aldehydes into carboxylic acids is generally possible with all strong oxidants. Silver(II) oxide in THF/water is particularly useful as a neutral oxidant (E.J. Corey, 1968 A). The direct conversion of primary alcohols into carboxylic esters is achieved with MnOj in the presence of hydrogen cyanide and alcohols (E.J. Corey, 1968 A,D). The remarkably smooth oxidation of ethers to esters by ruthenium tetroxide has been employed quite often (D.G. Lee, 1973). Dibutyl ether affords butyl butanoate, and tetra-hydrofuran yields butyrolactone almost quantitatively. More complex educts also give acceptable yields (M.E. Wolff, 1963). [Pg.134]

Butyrolactone. y-Butyrolactone [96-48-0] dihydro-2(3H)-furanone, was fkst synthesized in 1884 via internal esterification of 4-hydroxybutyric acid (146). In 1991 the principal commercial source of this material is dehydrogenation of butanediol. Manufacture by hydrogenation of maleic anhydride (147) was discontinued in the early 1980s and resumed in the late 1980s. Physical properties are Hsted in Table 4. [Pg.109]

Rea.ctlons, Butyrolactone undergoes the reactions typical of y-lactones. Particularly characteristic are ring openings and reactions in which ring oxygen is replaced by another heteroatom. There is also marked reactivity of the hydrogen atoms alpha to the carbonyl group. [Pg.110]

Butyrolactone and hydrogen sulfide heated over an alumina catalyst result in replacement of ring oxygen by sulfur (151). [Pg.110]

Frequendy unique and synthetically usehil are a series of ring-opening reactions. Butyrolactone and anhydrous hydrogen haUdes give high yields of 4-halobutyric acids (164). In the presence of alcohols, esters are formed. [Pg.111]

Ma.nufa.cture. Butyrolactone is manufactured by dehydrogenation of butanediol. The butyrolactone plant and process in Germany, as described after World War II (179), approximates the processes presendy used. The dehydrogenation was carried out with preheated butanediol vapor in a hydrogen carrier over a supported copper catalyst at 230—250°C. The yield of butyrolactone after purification by distillation was about 90%. [Pg.111]

Much more important is the hydrogenation product of butynediol, 1,4-butanediol [110-63-4]. The intermediate 2-butene-l,4-diol is also commercially available but has found few uses. 1,4-Butanediol, however, is used widely in polyurethanes and is of increasing interest for the preparation of thermoplastic polyesters, especially the terephthalate. Butanediol is also used as the starting material for a further series of chemicals including tetrahydrofuran, y-butyrolactone, 2-pyrrohdinone, A/-methylpyrrohdinone, and A/-vinylpyrrohdinone (see Acetylene-DERIVED chemicals). The 1,4-butanediol market essentially represents the only growing demand for acetylene as a feedstock. This demand is reported (34) as growing from 54,000 metric tons of acetylene in 1989 to a projected level of 88,000 metric tons in 1994. [Pg.393]

Survey of the patent Hterature reveals companies with processes for 1,4-butanediol from maleic anhydride include BASF (94), British Petroleum (95,96), Davy McKee (93,97), Hoechst (98), Huels (99), and Tonen (100,101). Processes for the production of y-butyrolactone have been described for operation in both the gas (102—104) and Hquid (105—108) phases. In the gas phase, direct hydrogenation of maleic anhydride in hydrogen at 245°C and 1.03 MPa gives an 88% yield of y-butyrolactone (104). Du Pont has developed a process for the production of tetrahydrofuran back-integrated to a butane feedstock (109). Slurry reactor catalysts containing palladium and rhenium are used to hydrogenate aqueous maleic acid to tetrahydrofuran (110,111). [Pg.453]

In the reaction of aHyl alcohol with carbon monoxide using cobalt carbonyl, Co(CO)g as the catalyst, in the presence of a small amount of hydrogen and carbon monoxide under pressure, 9.8 MPa (1420 psi), at 100°C, intramolecular hydroesterification takes place, yielding y-butyrolactone [96-48-0] (16). [Pg.73]

Pyrrohdinone (2-pyrrohdone, butyrolactam or 2-Pyrol) (27) was first reported in 1889 as a product of the dehydration of 4-aminobutanoic acid (49). The synthesis used for commercial manufacture, ie, condensation of butyrolactone with ammonia at high temperatures, was first described in 1936 (50). Other synthetic routes include carbon monoxide insertion into allylamine (51,52), hydrolytic hydrogenation of succinonitnle (53,54), and hydrogenation of ammoniacal solutions of maleic or succinic acids (55—57). Properties of 2-pyrrohdinone are Hsted in Table 2. 2-Pyrrohdinone is completely miscible with water, lower alcohols, lower ketones, ether, ethyl acetate, chloroform, and benzene. It is soluble to ca 1 wt % in aUphatic hydrocarbons. [Pg.359]

Hydrogenation. Gas-phase catalytic hydrogenation of succinic anhydride yields y-butyrolactone [96-48-0] (GBL), tetrahydrofiiran [109-99-9] (THF), 1,4-butanediol (BDO), or a mixture of these products, depending on the experimental conditions. Catalysts mentioned in the Hterature include copper chromites with various additives (72), copper—zinc oxides with promoters (73—75), and mthenium (76). The same products are obtained by hquid-phase hydrogenation catalysts used include Pd with various modifiers on various carriers (77—80), Ru on C (81) or Ru complexes (82,83), Rh on C (79), Cu—Co—Mn oxides (84), Co—Ni—Re oxides (85), Cu—Ti oxides (86), Ca—Mo—Ni on diatomaceous earth (87), and Mo—Ba—Re oxides (88). Chemical reduction of succinic anhydride to GBL or THF can be performed with 2-propanol in the presence of Zr02 catalyst (89,90). [Pg.535]

In the early 1990s, processes were developed for the production of 1,4-butanediol and y-butyrolactone by gas-phase catalytic hydrogenation of maleic anhydride (131—134). Succinic anhydride is obtained as a partial hydrogenation by-product in these processes. It can be recycled to complete the hydrogenation to the desired products, or be separated and purified. This process could in the future become a significant commercial route for succinic anhydride. [Pg.537]

H )-Euranones are useful building blocks in the synthesis of a variety of organic compounds. In addition, they often serve as valuable synthetic intermediates in the stereoselective construction of substituted y-butyrolactones via conjugated addition to the Q ,/3-unsaturated carbonyl moiety or catalytic hydrogenation of the double bond (88JOC1560). [Pg.127]

Hydrogenation of diethylmaleate in the vapor phase over a nonprecious metal catalyst produces diethyl succinate. Successive hydrogenation produces y-butyrolactone, butanediol, and tetrahydrofuran. [Pg.243]

Hydrazoic acid reaction with cyclobu-tanecarboxyhc acid, 47, 28 Hydrogenation of t butylazidoacetate to glycme ( butyl ester, 46,47 Hydrogen bromide 46, 43 reaction with y butyrolactone, 46, 43 Hydrogen fluoride anhydrous, precautions in use of, 46, 3 in preparation of mtromum tetra-fluoroborate 47, 57 reaction with benzoyl chloride, 46,4 with boron tnfluonde in conversion of p cymene to m cymene, 47, 40 in bromofluorination of 1 heptene, 46, 11... [Pg.130]

Hydrolysis, of 2 benzyl 2 carbometh oxycyclopentanone with lithium iodide m 2,4 6-colhdme, 46, 7 of 7 butyrolactone to ethyl y-bromo-butyrate with hydrogen bromide and ethanol, 46, 42 of 2,5 dicarbethoxy 1 4-cyclohexane-dione to 1,4 cyclohexanedione, 46, 25... [Pg.130]

The use of phenylpiperidinols rather than the meperidine-related piperidines as the basic component in antidiarrheal compounds results in retention of activity. The fact that the base is not directly related to a narcotic presumably leads to greater selectivity of action on the gut. Ring scission of butyrolactone 98 (obtainable by alkylation of a diphenylacetate ester with ethylene oxide) with hydrogen bromide gives the bromo acid 99. This is then converted to the dimethylamide by successive treatment with thionyl chloride and dimethylamine. [Pg.334]

Mitsubishi have reported several processes based on Ru-catalyzed hydrogenation of anhydrides and acids. Succinic anhydride can be converted into mixtures of 1,4-butane-diol and y-butyrolactone using [Ru(acac)3]/trioctylphosphine and an activator (often a phosphonic acid) [97]. Relatively high temperatures are required ( 200°C) for this reaction. The lactone can be prepared selectively under the appropriate reaction conditions, and a process has been developed for isolating the products and recycling the ruthenium catalyst [98-100]. [Pg.442]

Limited progress has been achieved in the enantioselective hydrogenation of a,/ -unsaturated carboxylic acid esters, amides, lactones, and ketones (Scheme 26.10). The Ru-BINAP system is efficient for the hydrogenation of 2-methy-lene-y-butyrolactone, and 2-methylene-cyclopentanone [98]. With a dicationic (S)-di-t-Bu-MeOBIPHEP-Ru complex under a high hydrogen pressure, 3-ethoxy pyr-rolidinone could be hydrogenated in isopropanol to give (R)-4-ethoxy-y-lactam in 98% ee [39]. [Pg.874]

Cyclobutanone annulation onto a carbonyl group translates into y-butyrolactone annulation because of the facility of the Baeyer-Villiger reaction (Eq. 68 a)8). Indeed, the reaction proceeds sufficiently rapidly that even basic hydrogen peroxide effects the oxidation whereas, with less reactive carbonyl partners, peracids must be used. [Pg.50]

Elimination of hydrogen bromide from a-bromo-y-butyrolactone with triethylamine, 46,22 Epichlorohydrin, 46, 24 Ether, /-butyl phenyl, id, 89 /j-Ethoxyphenyl isothiocyanate, 46, 21 Ethyl acetoacetate, 46, 82 Ethyl benzoyloxy cyanoacetates, 46, 38 Ethyl y-BROMOBUTYRATE, 46, 42 Ethyl 2-biomocyclopentane acetate, 46, 44... [Pg.58]


See other pages where Butyrolactones hydrogenation is mentioned: [Pg.385]    [Pg.90]    [Pg.385]    [Pg.90]    [Pg.478]    [Pg.537]    [Pg.79]    [Pg.129]    [Pg.84]    [Pg.737]    [Pg.825]    [Pg.737]    [Pg.33]    [Pg.35]    [Pg.49]    [Pg.872]    [Pg.1177]    [Pg.248]    [Pg.40]    [Pg.213]   
See also in sourсe #XX -- [ Pg.8 , Pg.246 ]




SEARCH



Butyrolactone

Butyrolactones

Hydrogen bromide reaction with 7-butyrolactone

Hydrogen bromide reaction with y-butyrolactone

© 2024 chempedia.info