Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Buoyancy flow

In the stratification strategy with a replacing air distribution in the lower zone, the height of the boundary layer between the lower and upper zones can be determined with the criteria of the contaminant interfacial level.This level, where the air mass flow in the plumes is equal to the air mass flow of the supply air, IS presented in Fig. 8,4. In this ideal case the wait and air temperatures are equal on the interfacial level. In practical cases they are not usually equal and the buoyancy flows on the walls will raise the level and decrease the gradient. [Pg.620]

Industrial halls are typically large enclosures—indoor spaces that typically comprise one or more zones of occupancy. A large height combined with heat sources often results in room airflow patterns controlled by buoyancy flows,... [Pg.625]

In the stratification strategy the supply air is used to substitute the outgoing air from the ventilated (in most cases occupied) zone, thus preventing circulation patterns between the zones. The supply air has to be distributed in such a way that the buoyancy flows are not disturbed. Exhaust air openings are to be located downstream in order to avoid reverse currents within the room. The location of the contaminant sources and the heat sources causing density differences must be the same in order to carry out the contaminants with equal or higher density than air. [Pg.634]

Thermally-Driven Buoyancy Flow. Thermal gradients can Induce appreciable flow velocities in fluids, as cool material is pulled downward by gravity while warmer fluid rises. This effect is Important in the solidification of crystals being grown for semiconductor applications, and might arise in some polymeric applications as well. To illustrate how easily such an effect can be added to the flow code, a body force term of pa(T-T ) has been added to the y-coraponent of the momentum equation, where here a is a coefficient of volumetric thermal expansion. [Pg.276]

Figure 6. Streamlines for thermally-driven buoyancy flow. Figure 6. Streamlines for thermally-driven buoyancy flow.
In cases where Gr Re2, free convection currents set in, being responsible for the transport processes. In packed beds of seeds, the particle Reynolds number is less than 10 to 50. The Grashof number represents the squared Reynolds number for the velocity of the buoyancy flow [18]. Therefore, the ratio of eqn. (3.4-68) is a comparison of the convective flow owing to buoyancy to the flow owing to circulation in terms of their respective squared Reynolds numbers. [Pg.114]

In (3.295) we estimate the magnitude of the individual terms. To this we consider the buoyancy flow on a flat plate which is sloped at an angle if to vertical. The inertia forces are of the order... [Pg.377]

Variable-Area Flow Meters. In variable-head flow meters, the pressure differential varies with flow rate across a constant restriction. In variable-area meters, the differential is maintained constant and the restriction area allowed to change in proportion to the flow rate. A variable-area meter is thus essentially a form of variable orifice. In its most common form, a variable-area meter consists of a tapered tube mounted vertically and containing a float that is free to move in the tube. When flow is introduced into the small diameter bottom end, the float rises to a point of dynamic equiHbrium at which the pressure differential across the float balances the weight of the float less its buoyancy. The shape and weight of the float, the relative diameters of tube and float, and the variation of the tube diameter with elevation all determine the performance characteristics of the meter for a specific set of fluid conditions. A ball float in a conical constant-taper glass tube is the most common design it is widely used in the measurement of low flow rates at essentially constant viscosity. The flow rate is normally deterrnined visually by float position relative to an etched scale on the side of the tube. Such a meter is simple and inexpensive but, with care in manufacture and caHbration, can provide rea dings accurate to within several percent of full-scale flow for either Hquid or gas. [Pg.61]

Heat is often removed by simply allowing it to escape by convection, radiation, and conduction. However, such uncontrolled escape can lead to very large temperature fluctuations. It is better to surround the entire container, heaters and all, with a controUed-temperature cooled chamber. Even then, buoyancy-driven free convection from the ampul can lead to small temperature fluctuations. Jets of air or cooling water appHed directly onto the ampul adjacent to the heater have been employed. Both temperature and flow rate of the coolant should be controlled. [Pg.451]

Landau instabilities are the hydrodynamic instabilities of flame sheets that are associated neither with acoustics nor with buoyancy but instead involve only the density decrease produced by combustion in incompressible flow. The mechanism of Landau instability is purely hydrodynamic. In principle, Landau instabilities should always be present in premixed flames, but in practice they are seldom observed (26,27). [Pg.518]

The physics and modeling of turbulent flows are affected by combustion through the production of density variations, buoyancy effects, dilation due to heat release, molecular transport, and instabiUty (1,2,3,5,8). Consequently, the conservation equations need to be modified to take these effects into account. This modification is achieved by the use of statistical quantities in the conservation equations. For example, because of the variations and fluctuations in the density that occur in turbulent combustion flows, density weighted mean values, or Favre mean values, are used for velocity components, mass fractions, enthalpy, and temperature. The turbulent diffusion flame can also be treated in terms of a probabiUty distribution function (pdf), the shape of which is assumed to be known a priori (1). [Pg.520]

Rotameter A rotameter consists of a vertical tube with a tapered bore in which a float changes position with the flow rate through the tube. For a given flow rate the float remains stationary since the vertical forces of differential pressure, gravity, viscosity, and buoyancy are balanced. The float position is the output of the meter and can be made essentially linear with flow rate by makiug the tube areavaiy hn-early with the vertical distance. [Pg.762]

GASFLOW models geometrically complex containments, buildings, and ventilation systems with multiple compartments and internal structures. It calculates gas and aerosol behavior of low-speed buoyancy driven flows, diffusion-dominated flows, and turbulent flows dunng deflagrations. It models condensation in the bulk fluid regions heat transfer to wall and internal stmetures by convection, radiation, and condensation chemical kinetics of combustion of hydrogen or hydrocarbon.s fluid turbulence and the transport, deposition, and entrainment of discrete particles. [Pg.354]

In this section the correlations used to determine the heat and mass transfer rates are presented. The convection process may be either free or forced convection. In free convection fluid motion is created by buoyancy forces within the fluid. In most industrial processes, forced convection is necessary in order to achieve the most economic heat exchange. The heat transfer correlations for forced convection in external and internal flows are given in Tables 4.8 and 4.9, respectively, for different conditions and geometries. [Pg.115]

Characteristics of the air jet in the room might be influenced by reverse flows, created by the jet entraining the ambient air. This air jet is called a confined jet. If the temperature of the supplied air is equal to the temperature of the ambient room air, the jet is an isothermal jet. A jet with an initial temperature different from the temperature of the ambient air is called a nonisother-mal jet. The air temperature differential between supplied and ambient room air generates buoyancy forces in the jet, affecting the trajectory of the jet, the location at which the jet attaches and separates from the ceiling/floor, and the throw of the jet. The significance of these effects depends on the relative strength of the thermal buoyancy and inertial forces (characterized by the Archimedes number). [Pg.446]

In the general case, a buoyant jet has an initial momentum. In the region close to discharge, momentum forces dominate the flow, so it behaves like a nonbuoyant jet. There is an intermediate region where the influence of the initial momentum forces becomes smaller and smaller. In the final region, the buoyancy forces completely dominate the flow and it behaves like a plume. When the jet is supplied at an angle to the vertical direction, it is turned upward by the buoyancy forces and behaves virtually like a vertical buoyant jet in a far field. A negative buoyant jet continuously loses momentum due the opposite direction of buoyancy forces to the supply air momentum and eventually turns downward. [Pg.456]

The only force opposing the downward flow of the heated air or upward flow of the cooled air is a buoyancy force. In their analysis, Helander and Jakowatz also suggested accounting for inertial forces due to the entrainment of room air. However, this suggestion is not in an agreement with a principle of momentum conservation used in most of the existing models for isothermal jets. [Pg.463]

A characteristic of many industrial halls is that zones of occupancy take up only a small portion of the room volume and height. In addition, the flows are normally buoyancy dominated. This results in a vertical temperature stratification that can be utilized for room air conditioning design in order to achieve effective climatization along with low energy consumption. [Pg.625]

A similar temperature and contaminant distribution throughout the room is reached with stratification as with a piston. The driving forces of the two strategies are, however, completely different and the distribution of parameters is in practice different. Typical schemes for the vertical distribution of temperature and contaminants are presented in Fig. 8.11. While in the piston strateg) the uniform flow pattern is created by the supply air, in stratification it is caused only by the density differences inside the room, i.e., the room airflows are controlled by the buoyancy forces. As a result, the contaminant removal and temperature effectiveness are more modest than with the piston air conditioning strategy. [Pg.633]

The key flow elements in the zoning strategy arc the supply air jets, plumes of the buoyancy sources, buoyant airflows along the surfaces, and turbulent mixing between the controlled and the uncontrolled zones, as in Fig. 8.32. These flow elements have significant influence on the effectiveness of the system. [Pg.651]

Jets used in local ventilation have the same forms and performance as jets in general ventilation, described in Sections 7.4 and 7.7. These sections describe usable equations for flow, velocity, temperature, and concentration distributions. The buoyancy plumes that can result at the end of a jet or from a warm source are described in Section 7..5. [Pg.919]

In aerosol theory, is the velocity of free fall of a particle, and by extension in the current work is an empirical velocity related to the buoyancy of the contaminant in air. We further assume that the overall fluid flow pattern is unaffected by the minor quantity of the buoyant contaminant. [Pg.951]

The flow field created within the protection zone depends mainly on the density difference between supply air and room air (Fig. 10.90). With vertical flow the supply air should be isothermal or cooler than ambient air. If it were warmer, the extension of the controlled flow would be reduced due to buoyancy effects, resulting in the supply air not reaching the operator s breathing zone. As the. supply air cannot be used for heating, the operator s thermal comfort should be maintained, preferably with radiant heaters in cold environments. If the supply air temperature is lower than the room air, the denser supply air accelerates down to the operator, and for continuity reasons the supply flow contracts. Excessive temperature differences result in a reduced controlled flow area with thermal discomfort, and should only be used in special cases. [Pg.977]


See other pages where Buoyancy flow is mentioned: [Pg.289]    [Pg.511]    [Pg.241]    [Pg.343]    [Pg.106]    [Pg.289]    [Pg.511]    [Pg.241]    [Pg.343]    [Pg.106]    [Pg.93]    [Pg.208]    [Pg.431]    [Pg.439]    [Pg.49]    [Pg.49]    [Pg.368]    [Pg.308]    [Pg.309]    [Pg.678]    [Pg.1550]    [Pg.84]    [Pg.433]    [Pg.268]    [Pg.527]    [Pg.275]    [Pg.517]    [Pg.518]    [Pg.629]    [Pg.631]    [Pg.828]   
See also in sourсe #XX -- [ Pg.24 ]




SEARCH



Buoyance

Buoyancy

Buoyancy-induced groundwater flow system

Stagnation flow buoyancy

Thermally driven buoyancy flow

© 2024 chempedia.info