Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bulk flow mass transfer

No kinetic parameters are present because the kinetics are so facile that no experimental manifestations can be seen. In effect, the potential and the surface concentrations are always kept in equilibrium with each other by the fast charge-transfer processes, and the thermodynamic equation, (3.4.28), characteristic of equilibrium, always holds. Net current flows because the surface concentrations are not at equilibrium with the bulk, and mass transfer continuously moves material to the surface, where it must be reconciled to the potential by electrochemical change. [Pg.106]

The flow pattern inside a gravity separator is complex owing to the simultaneous transport of multiple, heterogeneous bulk phases, mass transfer between these phases, and the impact of various internals. This section seeks to give a qualitative description of understanding flow patterns, in the light of the different effects of these results, by case descriptions. [Pg.672]

Film Theory. Many theories have been put forth to explain and correlate experimentally measured mass transfer coefficients. The classical model has been the film theory (13,26) that proposes to approximate the real situation at the interface by hypothetical "effective" gas and Hquid films. The fluid is assumed to be essentially stagnant within these effective films making a sharp change to totally turbulent flow where the film is in contact with the bulk of the fluid. As a result, mass is transferred through the effective films only by steady-state molecular diffusion and it is possible to compute the concentration profile through the films by integrating Fick s law ... [Pg.21]

Over 25 years ago the coking factor of the radiant coil was empirically correlated to operating conditions (48). It has been assumed that the mass transfer of coke precursors from the bulk of the gas to the walls was controlling the rate of deposition (39). Kinetic models (24,49,50) were developed based on the chemical reaction at the wall as a controlling step. Bench-scale data (51—53) appear to indicate that a chemical reaction controls. However, flow regimes of bench-scale reactors are so different from the commercial furnaces that scale-up of bench-scale results caimot be confidently appHed to commercial furnaces. For example. Figure 3 shows the coke deposited on a controlled cylindrical specimen in a continuous stirred tank reactor (CSTR) and the rate of coke deposition. The deposition rate decreases with time and attains a pseudo steady value. Though this is achieved in a matter of rninutes in bench-scale reactors, it takes a few days in a commercial furnace. [Pg.438]

Material Balances Whenever mass-transfer applications involve equipment of specific dimensions, flux equations alone are inadequate to assess results. A material balance or continuity equation must also be used. When the geometiy is simple, macroscopic balances suffice. The following equation is an overall mass balance for such a unit having bulk-flow ports and ports or interfaces through which diffusive flux can occur ... [Pg.592]

Equations (13-111) to (13-114), (13-118) and (13-119), contain terms, Njj, for rates of mass transfer of components from the vapor phase to the liquid phase (rates are negative if transfer is from the liquid phase to the vapor phase). These rates are estimated from diffusive and bulk-flow contributions, where the former are based on interfacial area, average mole-fraction driving forces, and mass-... [Pg.1291]

An important mixing operation involves bringing different molecular species together to obtain a chemical reaction. The components may be miscible liquids, immiscible liquids, solid particles and a liquid, a gas and a liquid, a gas and solid particles, or two gases. In some cases, temperature differences exist between an equipment surface and the bulk fluid, or between the suspended particles and the continuous phase fluid. The same mechanisms that enhance mass transfer by reducing the film thickness are used to promote heat transfer by increasing the temperature gradient in the film. These mechanisms are bulk flow, eddy diffusion, and molecular diffusion. The performance of equipment in which heat transfer occurs is expressed in terms of forced convective heat transfer coefficients. [Pg.553]

Since the total mass transfer rate of B is zero, there must be a bulk flow of the system towards the liquid surface exactly to counterbalance the diffusional flux away from the surface, as shown in Figure 10.1, where ... [Pg.578]

Equation 10.30 is known as Stefan s Law(3). Thus the bulk flow enhances the mass transfer rate by a factor Cj/Cjj, known as the drift factor. The fluxes of the components are given in Table 10.1. [Pg.578]

The theory is equally applicable when bulk flow occurs. In gas absorption, for example where may be expressed the mass transfer rate in terms of the concentration gradient in the gas phase ... [Pg.601]

On the basis of each of the theories discussed, the rate of mass transfer in the absence of bulk flow is directly proportional to the driving force, expressed as a molar concentration difference, and, therefore ... [Pg.619]

The penetration and film-penetration theories have been developed for conditions of equimolecular counterdiffusion only the equations are too complex to solve explicitly for transfer through a stationary carrier gas. For gas absorption, therefore, they apply only when the concentration of the material under going mass transfer is low. On the other hand, in the two-fihn theory the additional contribution to the mass transfer which is caused by bulk flow is easily calculated and hp (Section 10.23) is equal to (D/L)(Cr/Cum) instead of D/L. [Pg.619]

In a packed absorption column, the flow pattern is similar to that in a packed distillation column but the vapour stream is replaced by a mixture of carrier gas and solute gas. The solute diffuses through the gas phase to the liquid surface where it dissolves and is then transferred to the bulk of the liquid. In this case there is no mass transfer of the carrier fluid and the transfer rate of solute is supplemented by bulk flow. [Pg.623]

In distillation, equimolecular counterdiffusion takes place if the molar latent heats of the components are equal and the molar rate of flow of the two phases then remains approximately constant throughout the whole height of the column. In gas absorption, however, the mass transfer rate is increased as a result of bulk flow and, at high concentrations of soluble gas, the molar rate of flow at the top of the column will be less than that at the bottom, At low concentrations, however, bulk flow will contribute very little to mass transfer and, in addition, flowrates will be approximately constant over the whole column. [Pg.623]

In many applications of mass transfer the solute reacts with the medium as in the case, for example, of the absorption of carbon dioxide in an alkaline solution. The mass transfer rate then decreases in the direction of diffusion as a result of the reaction. Considering the unidirectional molecular diffusion of a component A through a distance Sy over area A. then, neglecting the effects of bulk flow, a material balance for an irreversible reaction of order n gives ... [Pg.626]

In a gas absorption process, the solute gas A diffuses into a solvent liquid with which it reacts. The mass transfer is one of steady state unidirectional molecular diffusion and the concentration of A is always sufficiently small for bulk flow to be negligible. Under these conditions the reaction is first order with respect to the solute A. [Pg.628]

The term Csm/Cr (the ratio of the logarithmic mean concentration of the insoluble component to the total concentration) is introduced because hD(CBm/Cr) is less dependent than hD on the concentrations of the components. This reflects the fact that the analogy between momentum, heat and mass transfer relates only to that part of the mass transfer which is not associated with the bulk flow mechanism this is a fraction Cum/Cr of the total mass transfer. For equimolecular counterdiffusion, as in binary distillation when the molar latent heats of the components are equal, the term Cem/Cj- is omitted as there is no bulk flow contributing to the mass transfer. [Pg.648]

In these experiments, it might be anticipated that, with high concentrations of vapour in the air, the rate of evaporation would no longer be linearly related to the partial pressure difference because of the contribution of bulk flow to the mass transfer process (Section 10.2.3), although there is no evidence of this even at mole fractions of vapour at the surface as high as 0.5. Possibly the experimental measurements were nol sufficiently sensitive to detect this effect. [Pg.650]

Mass transfer from a single spherical drop to still air is controlled by molecular diffusion and. at low concentrations when bulk flow is negligible, the problem is analogous to that of heat transfer by conduction from a sphere, which is considered in Chapter 9, Section 9.3.4. Thus, for steady-state radial diffusion into a large expanse of stationary fluid in which the partial pressure falls off to zero over an infinite distance, the equation for mass transfer will take the same form as that for heat transfer (equation 9.26) ... [Pg.652]

If a concentration gradient exists within a fluid flowing over a surface, mass transfer will take place, and the whole of the resistance to transfer can be regarded as lying within a diffusion boundary layer in the vicinity of the surface. If the concentration gradients, and hence the mass transfer rates, are small, variations in physical properties may be neglected and it can be shown that the velocity and thermal boundary layers are unaffected 55. For low concentrations of the diffusing component, the effects of bulk flow will be small and the mass balance equation for component A is ... [Pg.691]

Thus, there is a direct proportionality between the momentum transfer and that portion of the mass transfer which is not attributable to bulk flow. [Pg.724]

Thus for simultaneous heat transfer and mass transfer with bulk flow, combination ni equations 12.111 and 12.102 gives ... [Pg.725]

Equation 12.112 is the form of the Lewis Relation which is applicable to mass transfer with bulk flow. [Pg.725]

A similar expression can also be derived for mass transfer in the absence of bulk flow ... [Pg.729]

The diffusivity of water vapour in air is 2.4 x It) 5 nr/s and the mass transfer resistance is equivalent to that of a stagnant gas film of thickness 0.25 mm. Neglect the effects of bulk flow. [Pg.856]

Obtain the Taylor-Prandtl modification of the Reynolds Analogy for momentum and heat transfer, and give the corresponding relation for mass transfer (no bulk flow). [Pg.864]

Mass transfer and chemical kinetic factors in CVD include the flow of initial substances and gaseous products through the system, the transport of reactants from the gas phase to the substrate surface, the transport of the gaseous products from the substrate surface to the bulk gas, as well as the reactions taking place at the substrate surface . ... [Pg.275]


See other pages where Bulk flow mass transfer is mentioned: [Pg.839]    [Pg.3201]    [Pg.239]    [Pg.66]    [Pg.22]    [Pg.16]    [Pg.888]    [Pg.1291]    [Pg.1354]    [Pg.2031]    [Pg.306]    [Pg.453]    [Pg.129]    [Pg.591]    [Pg.603]    [Pg.723]    [Pg.882]    [Pg.337]    [Pg.355]    [Pg.179]    [Pg.14]    [Pg.223]   
See also in sourсe #XX -- [ Pg.578 ]




SEARCH



Bulk flow

Bulk mass transfer

Bulk/mass

© 2024 chempedia.info