Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bubbling interfacial area

Aeration of liquids not only increases charging due to the large liquid-bubble interfacial area but can also produce hazardous conditions in downstream... [Pg.118]

Flow Reactors Fast reactions and those in the gas phase are generally done in tubular flow reaclors, just as they are often done on the commercial scale. Some heterogeneous reactors are shown in Fig. 23-29 the item in Fig. 23-29g is suited to liquid/liquid as well as gas/liquid. Stirred tanks, bubble and packed towers, and other commercial types are also used. The operadon of such units can sometimes be predicted from independent data of chemical and mass transfer rates, correlations of interfacial areas, droplet sizes, and other data. [Pg.708]

Effective area should not be confused with wetted area. While film flow of liquid across the packing surface is a contributor, effective area includes also contribiidons from rivulets, drippings, and gas bubbles. Because of this complex physical picture, effecdve interfacial area is difficnlt to measure directly. [Pg.1397]

Region II, 0.02 < P < 2. Most of the reaction occurs in the bulk of the liquid. Both interfacial area and holdup of liquid should be high. Stirred tanks or bubble columns will be suitable. [Pg.2109]

Region III, P < 0.02. Reaction is slow and occurs in the bulk hquid. Interfacial area and liquid holdup should be high, especially the latter. Bubble columns will be suitable. [Pg.2109]

Auxiliary data are the sizes of bubbles and droplets. These data and the holdups of the two phases are measured by a variety of standard techniques. Interfacial area measurements utihze techniques of transmission or reflection of light. Data on and methods for finding sohi-bihties of gases or the relation between partial pressure and concentration in hquid are also well estabhshecT... [Pg.2109]

Two complementai y reviews of this subject are by Shah et al. AIChE Journal, 28, 353-379 [1982]) and Deckwer (in de Lasa, ed.. Chemical Reactor Design andTechnology, Martinus Nijhoff, 1985, pp. 411-461). Useful comments are made by Doraiswamy and Sharma (Heterogeneous Reactions, Wiley, 1984). Charpentier (in Gianetto and Silveston, eds.. Multiphase Chemical Reactors, Hemisphere, 1986, pp. 104—151) emphasizes parameters of trickle bed and stirred tank reactors. Recommendations based on the literature are made for several design parameters namely, bubble diameter and velocity of rise, gas holdup, interfacial area, mass-transfer coefficients k a and /cl but not /cg, axial liquid-phase dispersion coefficient, and heat-transfer coefficient to the wall. The effect of vessel diameter on these parameters is insignificant when D > 0.15 m (0.49 ft), except for the dispersion coefficient. Application of these correlations is to (1) chlorination of toluene in the presence of FeCl,3 catalyst, (2) absorption of SO9 in aqueous potassium carbonate with arsenite catalyst, and (3) reaction of butene with sulfuric acid to butanol. [Pg.2115]

To apply the mass transfer equation for design, the interfacial area, a, and mass transfer coefficient kL must be calculated. The interfacial area is dependent upon the bubble size and gas hold-up in the mixing vessel as given by ... [Pg.473]

This dispersion of the gas passes through several stages depending on the gas feed rate to the underside of the impeller and the horsepower to the impeller, varying from inadequate dispersion at low flow to total gas bubble dispersion throughout the vessel. The open, without disk, radial flow type impeller is the preferred dispersing unit because it requires lower horsepower than the axial flow impeller. The impeller determines the bubble size and interfacial area. [Pg.325]

Agitation of fermentation broth creates a uniform distribution of ah in the media. Once you mix a solution, you exert an energy into the system. Increasing power input reduces the bubble size and this in turn increases the interfacial area. Therefore the mass transfer coefficient would be a function of power input per unit volume of fermentation broth, which is also affected by the gas superficial velocity.2,3 The general correlation is expected to be as follows ... [Pg.26]

CAL Oxygen concentration in equilibrium with liquid phase at the interface, kmol/m3 CAL Oxygen concentration in the bulk of liquid, kmol/m3 a Interfacial area in surface area of bubbles per unit volume of broth, m2/m3 PQ, Oxygen partial pressure at the interface, atm H Henry s law constant, atm... [Pg.42]

The mass transfer, KL-a for a continuous stirred tank bioreactor can be correlated by power input per unit volume, bubble size, which reflects the interfacial area and superficial gas velocity.3 6 The general form of the correlations for evaluating KL-a is defined as a polynomial equation given by (3.6.1). [Pg.45]

A complicating factor in this process is the formation of finely divided carbon, which causes an increase of liquid viscosity and promotes bubble coalescence whereby the gas-liquid interfacial area is reduced. Also observed was a effect of reactor height, which may be attributed to bubble coalescence. [Pg.120]

Later publications have been concerned with mass transfer in systems containing no suspended solids. Calderbank measured and correlated gas-liquid interfacial areas (Cl), and evaluated the gas and liquid mass-transfer coefficients for gas-liquid contacting equipment with and without mechanical agitation (C2). It was found that gas film resistance was negligible compared to liquid film resistance, and that the latter was largely independent of bubble size and bubble velocity. He concluded that the effect of mechanical agitation on absorber performance is due to an increase of interfacial gas-liquid area corresponding to a decrease of bubble size. [Pg.121]

The absorption rate increased with increasing nominal liquid velocity for all particle sizes and decreased with increasing particle size for all liquid velocities. The absorption rates were lower than those measured in an equivalent gas-liquid system with no solid particles present. The difference is explained as being due to a higher rate of bubble coalescence and, consequently, a lower gas-liquid interfacial area in the gas-liquid fluidized bed. [Pg.124]

The results of Massimilla et al., 0stergaard, and Adlington and Thompson are in substantial agreement on the fact that gas-liquid fluidized beds are characterized by higher rates of bubble coalescence and, as a consequence, lower gas-liquid interfacial areas than those observed in equivalent gas-liquid systems with no solid particles present. This supports the observations of gas absorption rate by Massimilla et al. It may be assumed that the absorption rate depends upon the interfacial area, the gas residence-time, and a mass-transfer coefficient. The last of these factors is probably higher in a gas-liquid fluidized bed because the bubble Reynolds number is higher, but the interfacial area is lower and the gas residence-time is also lower, as will be further discussed in Section V,E,3. [Pg.125]

These results are, however, only valid for the particle sizes referred to. Lee (L3) has reported measurements of average bubble diameter and gas-liquid interfacial area for gas-liquid fluidized beds of glass beads of 6-mm... [Pg.125]

Increase in interfacial area. The total surface area for diffusion is increased because the bubble diameter is smaller than for the free-bubbling case at the same gas flow rate hence there is a resultant increase in the overall absorption rate. The overall absorption rate will also increase when the diffusion is accompanied by simultaneous chemical reaction in the liquid phase, but the increase in surface area only has an appreciable effect when the chemical reaction rate is high the absorption rate for this case is then controlled by physical diffusion rather than by the chemical reaction rate (G6). [Pg.297]


See other pages where Bubbling interfacial area is mentioned: [Pg.226]    [Pg.1324]    [Pg.803]    [Pg.226]    [Pg.1324]    [Pg.803]    [Pg.427]    [Pg.427]    [Pg.428]    [Pg.431]    [Pg.501]    [Pg.507]    [Pg.524]    [Pg.156]    [Pg.1292]    [Pg.1425]    [Pg.2115]    [Pg.2115]    [Pg.2115]    [Pg.88]    [Pg.473]    [Pg.318]    [Pg.37]    [Pg.24]    [Pg.24]    [Pg.27]    [Pg.28]    [Pg.28]    [Pg.44]    [Pg.111]    [Pg.113]    [Pg.115]    [Pg.126]    [Pg.306]   
See also in sourсe #XX -- [ Pg.107 ]




SEARCH



Bubble Size and Specific Interfacial Area

Bubble holdup, interfacial area

Bubble interfacial area

Bubble interfacial area

Bubble specific interfacial area

Bubbling area

Interfacial area

© 2024 chempedia.info