Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Brunauer model

In the Feldman-Sereda model, the gel is considered as a poorly crystallized layered silieate and the role of water is much more complex (Fig. 7) than is recognized by the Powers-Brunauer model. Water does not re-enter the interlayer after d-drying. Water, in eontaet with the d-dried gel, acts in several ways ... [Pg.59]

Brunauer (see Refs. 136-138) defended these defects as deliberate approximations needed to obtain a practical two-constant equation. The assumption of a constant heat of adsorption in the first layer represents a balance between the effects of surface heterogeneity and of lateral interaction, and the assumption of a constant instead of a decreasing heat of adsorption for the succeeding layers balances the overestimate of the entropy of adsorption. These comments do help to explain why the model works as well as it does. However, since these approximations are inherent in the treatment, one can see why the BET model does not lend itself readily to any detailed insight into the real physical nature of multilayers. In summary, the BET equation will undoubtedly maintain its usefulness in surface area determinations, and it does provide some physical information about the nature of the adsorbed film, but only at the level of approximation inherent in the model. Mainly, the c value provides an estimate of the first layer heat of adsorption, averaged over the region of fit. [Pg.653]

To obtain the monolayer capacity from the isotherm, it is necessary to interpret the (Type II) isotherm in quantitative terms. A number of theories have been advanced for this purpose from time to time, none with complete success. The best known of them, and perhaps the most useful in relation to surface area determination, is that of Brunauer, Emmett and Teller. Though based on a model which is admittedly over-simplified and open to criticism on a number of grounds, the theory leads to an expression—the BET equation —which, when applied with discrimination, has proved remarkably successful in evaluating the specific surface from a Type II isotherm. [Pg.42]

From the earliest days, the BET model has been subject to a number of criticisms. The model assumes all the adsorption sites on the surface to be energetically identical, but as was indicated in Section 1.5 (p. 18) homogeneous surfaces of this kind are the exception and energetically heterogeneous surfaces are the rule. Experimental evidence—e.g. in curves of the heat of adsorption as a function of the amount adsorbed (cf. Fig. 2.14)—demonstrates that the degree of heterogeneity can be very considerable. Indeed, Brunauer, Emmett and Teller adduced this nonuniformity as the reason for the failure of their equation to reproduce experimental data in the low-pressure region. [Pg.49]

In the pioneer work of Foster the correction due to film thinning had to be neglected, but with the coming of the BET and related methods for the evaluation of specific surface, it became possible to estimate the thickness of the adsorbed film on the walls. A number of procedures have been devised for the calculation of pore size distribution, in which the adsorption contribution is allowed for. All of them are necessarily somewhat tedious and require close attention to detail, and at some stage or another involve the assumption of a pore model. The model-less method of Brunauer and his colleagues represents an attempt to postpone the introduction of a model to a late stage in the calculations. [Pg.134]

The procedures described so far have all required a pore model to be assumed at the outset, usually the cylinder, adopted on the grounds of simplicity rather than correspondence with actuality. Brunauer, Mikhail and Bodor have attempted to eliminate the over-dejjendence on a model by basing their analysis on the hydraulic radius r rather than the Kelvin radius r . The hydraulic radius is defined as the ratio of the cross-sectional area of a tube to its perimeter, so that for a capillary of uniform cross-section r is equal to the ratio of the volume of an element of core to... [Pg.145]

III. MODELS DESCRIBING VAPOR ADSORPTION A. Brunauer, Emmett, and Teller Equation... [Pg.391]

A number of models have been developed for the analysis of the adsorption data, including the most common Langmuir [49] and BET (Brunauer, Emmet, and Teller) [50] equations, and others such as t-plot [51], H-K (Horvath-Kawazoe) [52], and BJH (Barrett, Joyner, and Halenda) [53] methods. The BET model is often the method of choice, and is usually used for the measurement of total surface areas. In contrast, t-plots and the BJH method are best employed to calculate total micropore and mesopore volume, respectively [46], A combination of isothermal adsorption measurements can provide a fairly complete picture of the pore size distribution in sohd catalysts. Mary surface area analyzers and software based on this methodology are commercially available nowadays. [Pg.8]

The determination of the specific surface area of a zeolite is not trivial. Providers of zeolites typically give surface areas for their products, which were calculated from gas adsorption measurements applying the Brunauer-Emmet-Teller (BET) method. The BET method is based on a model assuming the successive formation of several layers of gas molecules on a given surface (multilayer adsorption). The specific surface area is then calculated from the amount of adsorbed molecules in the first layer. The space occupied by one adsorbed molecule is multiplied by the number of molecules, thus resulting in an area, which is assumed to be the best estimate for the surface area of the solid. The BET method provides a tool to calculate the number of molecules in the first layer. Unfortunately, it is based on a model assuming multilayer formation. Yet, the formation of multilayers is impossible in the narrow pores of zeolites. Specific surface areas of zeolites calculated by the BET method (often termed BET surface area) are therefore erroneous and should not be mistaken as the real surface areas of a material. Such numbers are more related to the pore volume of a zeolite rather than to their surface areas. [Pg.101]

The number of gas molecules can be measured either directly with a balance (gravimetric method) or calculated from the pressure difference of the gas in a fixed volume upon adsorption (manometric method). The most frequently apphed method to derive the monolayer capacity is a method developed by Brunauer, Emmett, and Teller (BET) [1], Starting from the Langmuir equation (monolayer adsorption) they developed a multilayer adsorption model that allows the calculation of the specific surface area of a sohd. The BET equation is typically expressed in its linear form as... [Pg.128]

Brunauer-Emmett-Teller (BET) adsorption describes multi-layer Langmuir adsorption. Multi-layer adsorption occurs in physical or van der Waals bonding of gases or vapors to solid phases. The BET model, originally used to describe this adsorption, has been applied to the description of adsorption from solid solutions. The adsorption of molecules to the surface of particles forms a new surface layer to which additional molecules can adsorb. If it is assumed that the energy of adsorption on all successive layers is equal, the BET adsorption model [36] is expressed as Eq. (6) ... [Pg.174]

Many models have been developed that deal with the sorption properties of wood in the presence of moisture these have been discussed in a number of works (e.g. Skaar, 1972 Siau, 1984). They can be approximately divided into sorption models, such as the Brunauer-Emmett-Teller (BET) model, or solution models (such as the Hailwood-Horrobin, H-H, model). The sigmoidal shapes of sorption or desorption isotherms can be deconvoluted into two components. These are often taken to represent a monomolecular water layer (associated with the primary sorption sites, OH groups), and a multilayer component where the cell wall bound water molecules are less intimately associated with the fixed cell wall OH groups. [Pg.30]

Popper and Bariska (1972) studied the moisture sorption properties of wood chemically modified with acetic (or phthalic) anhydride and analysed the results using Brunauer-Emmett-Teller (BET) theory and the H-H model. Acetylation was found to reduce the number of sorption sites, whereas little effect was noted with phthaloylation. By dividing the sorption isotherm into a monolayer component and a multilayer component using the H-H model, it was shown that there was a large reduction in the... [Pg.70]

The Brunauer type I is the characteristic shape that arises from uniform micro-porous sorbents such as zeolite molecular sieves. It must be admitted though that there are indeed some deviations from pure Brunauer type I behavior in zeoHtes. From this we derive the concept of the favorable versus an unfavorable isotherm for adsorption. The computation of mass transfer coefficients can be accompHshed through the construction of a multiple mass transfer resistance model. Resistance modehng utilizes the analogy between electrical current flow and transport of molecular species. In electrical current flow voltage difference represents the driving force and current flow represents the transport In mass transport the driving force is typically concentration difference and the flux of the species into the sorbent is resisted by various mechanisms. [Pg.285]

In addition to these characterizations of adsorption curves, mathematical descriptions of adsorption isotherms, based on physical models, often are used to study solid interactions with contaminants. The main adsorption isotherms include those of Langmuir, Freundhch, and Brunauer-Emmet-TeUer (BET) they are depicted in Fig. 5.2. [Pg.97]

Wheeler [16] proposed that the mean radius, r, and length, L, of pores in a catalyst pellet (of, for that matter, a porous solid reactant) are determined in such a way that the sum of the surface areas of all the pores constituting the honeycomb of pores is equal to the BET (Brunauer, Emmett and Teller [17]) surface area and that the sum of the pore volume is equed to the experimental pore volume. If represents the external surface area of the porous particle (e.g. as determined for cracking catalysts be sedimentation [18]) and there are n pores per unit external area, the pore volume contained by nSx cylindrically shaped pores is nSx nr L. The total extent of the experimentally measured pore volume will be equal to the product of the pellet volume, Vp, the pellet density, Pp, and the specific pore volume, v. Equating the experimental pore volume to the pore volume of the model... [Pg.165]

The model of Brunauer, Emmett and Teller (BET) assumes that the enthalpy of adsorption for the first monolayer of molecules is AHads and for all additional layers Ai-fy. Furthermore, it assumes that all layers are in equilibrium. With the following definitions ... [Pg.122]

As we see in the course of the chapter, these two approaches frequently clash. The adsorption isotherm of Brunauer, Emmett, and Teller (BET), which is discussed in Section 9.5, is an excellent example of this. The model on which the BET isotherm is based has been criticized by many theoreticians. At the same time, the isotherm itself has become virtually... [Pg.412]

For most practical purposes, the isotherm can be modeled by an empirical (Brunauer, Emmett and Teller BET) or theoretical (Guggenheim, Anderson, and DeBoer GAB) equation (see below) however, none of the isotherm models in the literature is valid over the entire aw range of 0 to 1. The GAB model is one of the most widely accepted models for foods over a wide range of aw (from 0.10 to 0.90). The details of the different isotherm models with their parameters have been compiled by Rahman (1995). The BET (Eq. A2.3.4) and GAB (Eq. A2.3.5) equations are given as follows ... [Pg.59]

In Langmuir model, the maximal adsorption is that of a monolayer. Langmuir adsorption isotherms all saturate at high vapor pressures. This is unrealistic for many cases. In order to consider the adsorption of multilayers, Brunauer, Emmett, and Teller extended the Langmuir theory and derived the so-called BET adsorption isotherm [378], The basic idea in the BET theory was to assume a Langmuir adsorption for each of the layers (Fig. 9.8). [Pg.189]

Another common model which also describes multilayer adsorption is the Brunauer-Emmett-Teller equation [Eqs. (4.3) and (4.4), often called the BET equation or the BETmethod], published in 1938 [82], Here Vis the amount adsorbed, Vm is the amount adsorbed in one monolayer, p is the pressure, p° is the saturation pressure, C is a constant which relates to the net heat of adsorption, and N [in the cases of Eq. (4.4)] is the maximum number of layers which can form in a pore. [Pg.148]

The assumption of monolayer adsorption in the Langmuir isotherm model is unrealistic in most cases, and a modification to multilayer adsorption should be considered. In 1938, Brunauer, Emmett, and Teller modified the Langmuir approach of balancing the rates of adsorption and desorption for the various molecular layers [Brunauer et al., 1938], This approach is known as the BET method. The BET isotherm assumes that the adsorption of the first layer has a characteristic heat of adsorption A Ha and the adsorption and desorption on subsequent layers are controlled by the heat of condensation of the vapor, A Hc. The derivation of the BET equation is beyond the scope of this book however, a common form of the BET equation is given as... [Pg.26]

Brunauer, Emmett, and Teller (BET) proposed a model that extends the Langmuir model to multilayer adsorption and which has several AHads components. The BET equation treats the extra adsorption layers by analogy with evaporation and condensation processes, and takes the form ... [Pg.16]

Because the Langmuir isotherm is not an adequate description of most systems, Equation (2.9) is not used much for area measurement. A number of other isotherm formulations utilize adsorption in surface area measurements, however (cf. Young Crowell, 1962, for example). The best known and most widely used is the BET (Brunauer, Emmett Teller, 1938) theory, a generalization of the Langmuir model to multilayer absorption. Assuming that for the second and succeeding molecular... [Pg.36]

As pressure increases, new islands form, and some of them flow together until the whole surface becomes covered with adsorbed liquid when the vapor pressure is reached. Using this model, Polanyi and Goldmann concluded that adsorption of vapors on charcoal was not unimolecular, although the data obeys the Langmuir equation. Goldmann and Polanyi (1928), in ref. 23. See Brunauer, The Adsorption of Gases and Vapours, 116-119. [Pg.256]

The most widespread method in determining the specific surface area of solid substrates is without doubt the Brunauer-Emmet-Teller (BET) method.3 It is based on a kinetic model of the adsorption process by Langmuir,7 in which the surface of the solid was regarded as an array of adsorption sites. A state of dynamic equilibrium... [Pg.34]

Since this model was far too complex to serve any practical purpose, Brunauer, Emmet and Teller made some simplifying assumptions (the main one being that in all layers the evaporation-condensation mechanisms are identical) to derive their famous BET equation, to be used in the multilayer-adsorption region of the adsorption isotherm ... [Pg.35]

The equilibrium isotherms for microporous adsorbents are generally of type I form in Brunauer s classification (Fig. 1). Such isotherms are commonly represented by the Langmuir model,... [Pg.32]

The BET theory, developed by Brunauer, Emmett, and Teller [26], is based on the kinetic model of adsorption proposed by Langmuir [24,25] and was extended to describe the multilayer adsorption by the introduction of some assumptions listed below ... [Pg.120]


See other pages where Brunauer model is mentioned: [Pg.59]    [Pg.59]    [Pg.120]    [Pg.54]    [Pg.149]    [Pg.391]    [Pg.168]    [Pg.174]    [Pg.284]    [Pg.291]    [Pg.41]    [Pg.429]    [Pg.1]    [Pg.529]    [Pg.189]    [Pg.872]    [Pg.150]    [Pg.216]    [Pg.300]   
See also in sourсe #XX -- [ Pg.252 ]




SEARCH



Brunauer

© 2024 chempedia.info