Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Density brittleness

Grayish-white cubic crystals lustrous and brittle density 5.323 g/cm hardness 6.0 Mohs melts at 938.2°C vaporizes at 2,833°C a poor conductor of electricity electrical resistivity 47 microhm-cm dielectric constant 15.7 specific magnetic susceptibility (at 20°C) 0.122x10 insoluble in water, dilute acids and dilute alkalies attacked by concentrated nitric and sulfuric acids, aqua regia and fused alkalies. [Pg.314]

Under compression or shear most polymers show qualitatively similar behaviour. However, under the application of tensile stress, two different defonnation processes after the yield point are known. Ductile polymers elongate in an irreversible process similar to flow, while brittle systems whiten due the fonnation of microvoids. These voids rapidly grow and lead to sample failure [50, 51]- The reason for these conspicuously different defonnation mechanisms are thought to be related to the local dynamics of the polymer chains and to the entanglement network density. [Pg.2535]

In methacrylic ester polymers, the glass-transition temperature, is influenced primarily by the nature of the alcohol group as can be seen in Table 1. Below the the polymers are hard, brittle, and glass-like above the they are relatively soft, flexible, and mbbery. At even higher temperatures, depending on molecular weight, they flow and are tacky. Table 1 also contains typical values for the density, solubiHty parameter, and refractive index for various methacrylic homopolymers. [Pg.259]

Low Temperature Brittleness. Brittleness temperature is the temperature at which polyethylene becomes sufficiently brittle to break when subjected to a sudden blow. Because some polyethylene end products are used under particularly cold climates, they must be made of a polymer that has good impact resistance at low temperatures namely, polymers with high viscosity, lower density, and narrow molecular weight distribution. ASTM D746 is used for this test. [Pg.372]

A mixture of PhenoHc MicrobaUoons and resin binder has a putty-like consistency. It can be molded to shape, troweUed onto surfaces, or pressed into a core. Curing gives a high strength, low density (0.144 g/cm ) foam free of voids and dense areas, and without a brittle skin. Syntactic foams are used in widely diverse appHcations, including boat flotation aids stmctural parts in aircraft, submarines, and missiles stmctural cores for waU panels and ablative heat shields for reentry vehicles and rocket test engines. [Pg.308]

The alloy niobium titanium (NbTi) and the intermetaUic compound of niobium and tin (Nb.3 Sn) are the most technologically advanced LTS materials presently available. Even though NbTi has a lower critical field and critical current density, it is often selected because its metallurgical properties favor convenient wire fabrication. In contrast, Nb.3Sn is a veiy brittle material and requires wire fabrication under very well-defined temperature conditions. [Pg.1127]

FIG. 20-80 Heckel profiles of the unloaded relative compact density for (1) a material densifying by pure plastic deformation, and (2) a material densifying with contributions from brittle fragmentation and particle rearrangement. [Pg.1891]

Tungsten Highest melting point nonvolatile oxide to at least 2500 F Highest density oxidizing rapidly brittle at low temperatures... [Pg.2476]

These requirements severely limit our choice of creep-resistant materials. For example, ceramics, with their high softening temperatures and low densities, are ruled out for aero-engines because they are far too brittle (they are under evaluation for use in land-based turbines, where the risks and consequences of sudden failure are less severe - see below). Cermets offer no great advantage because their metallic matrices soften at much too low a temperature. The materials which best fill present needs are the nickel-based super-alloys. [Pg.199]

Figure 10.8. Effects of melt flow index and density on the room temperature tough-brittle transition of polyethylene. (Reproduced by permission of ICI)... Figure 10.8. Effects of melt flow index and density on the room temperature tough-brittle transition of polyethylene. (Reproduced by permission of ICI)...
Many monomers have been copolymerised with ethylene using a variety of polymerisation systems, in some cases leading to commercial products. Copolymerisation of ethylene with other olefins leads to hydrocarbon polymers with reduced regularity and hence lower density, inferior mechanical properties, lower softening point and lower brittle point. [Pg.275]

In the crystalline region isotactic polystyrene molecules take a helical form with three monomer residues per turn and an identity period of 6.65 A. One hundred percent crystalline polymer has a density of 1.12 compared with 1.05 for amorphous polymer and is also translucent. The melting point of the polymer is as high as 230°C. Below the glass transition temperature of 97°C the polymer is rather brittle. [Pg.454]

Because of the high cross-link density of polyisocyanurates as prepared above, the resultant foams are brittle, so that there has been a move towards polyisocyanurate-polyurethane combinations. For example, isocyanurate-con-taining polyurethane foams have been prepared by trimerisation isocyanate-tipped TDI-based prepolymers. The isocyanurate trimerising reaction has also been carried out in the presence of polyols of molecular weight less than 300 to give foams by both one-shot and prepolymer methods. [Pg.807]

Low-density polyethylene, a tough, relatively flexible material, is used at temperatures up to 50°C and does not become brittle until the temperature falls to -40 C. [Pg.113]


See other pages where Density brittleness is mentioned: [Pg.209]    [Pg.129]    [Pg.209]    [Pg.209]    [Pg.129]    [Pg.209]    [Pg.370]    [Pg.347]    [Pg.232]    [Pg.151]    [Pg.13]    [Pg.306]    [Pg.449]    [Pg.344]    [Pg.328]    [Pg.527]    [Pg.350]    [Pg.4]    [Pg.31]    [Pg.135]    [Pg.532]    [Pg.1127]    [Pg.1891]    [Pg.47]    [Pg.255]    [Pg.210]    [Pg.74]    [Pg.220]    [Pg.235]    [Pg.265]    [Pg.270]    [Pg.319]    [Pg.463]    [Pg.696]    [Pg.522]    [Pg.27]    [Pg.153]    [Pg.146]    [Pg.284]   
See also in sourсe #XX -- [ Pg.40 , Pg.47 , Pg.83 ]




SEARCH



Brittle-1

Brittleness

© 2024 chempedia.info