Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boundary element method model

Ire boundary element method of Kashin is similar in spirit to the polarisable continuum model, lut the surface of the cavity is taken to be the molecular surface of the solute [Kashin and lamboodiri 1987 Kashin 1990]. This cavity surface is divided into small boimdary elements, he solute is modelled as a set of atoms with point polarisabilities. The electric field induces 1 dipole proportional to its polarisability. The electric field at an atom has contributions from lipoles on other atoms in the molecule, from polarisation charges on the boundary, and where appropriate) from the charges of electrolytes in the solution. The charge density is issumed to be constant within each boundary element but is not reduced to a single )oint as in the PCM model. A set of linear equations can be set up to describe the electrostatic nteractions within the system. The solutions to these equations give the boundary element harge distribution and the induced dipoles, from which thermodynamic quantities can be letermined. [Pg.614]

How can Equation (11.79) be solved Before computers were available only simple ihapes could be considered. For example, proteins were modelled as spheres or ellipses Tanford-Kirkwood theory) DNA as a uniformly charged cylinder and membranes as planes (Gouy-Chapman theory). With computers, numerical approaches can be used to solve the Poisson-Boltzmann equation. A variety of numerical methods can be employed, including finite element and boundary element methods, but we will restrict our discussion to the finite difference method first introduced for proteins by Warwicker and Watson [Warwicker and Watson 1982]. Several groups have implemented this method here we concentrate on the work of Honig s group, whose DelPhi program has been widely used. [Pg.620]

The continuum treatment of electrostatics can also model salt effects by generalizing the Poisson equation (12) to the Poisson-Boltzmann equation. The finite difference approach to solving Eq. (12) extends naturally to treating the Poisson-Boltzmann equation [21], and the boundary element method can be extended as well [19]. [Pg.100]

To calculate free energies of solvation for several organic molecules, Fortunelli and Tomasi applied the boundary element method for the reaction field in DFT/SCRF framework173. The authors demonstrated that the DFT/SCRF results obtained with the B88 exchange functional and with either the P86 or the LYP correlation functional are significantly closer to the experimental ones than the ones steming from the HF/SCRF calculations. The authors used the same cavity parameters for the HF/SCRF and DFT/SCRF calculations, which makes it possible to attribute the apparent superiority of the DFT/SCRF results to the density functional component of the model. The boundary element method appeared to be very efficient computationally. The DFT/SCRF calculations required only a few percent more CPU time than the corresponding gas-phase SCF calculations. [Pg.114]

The subject of liquid jet and sheet atomization has attracted considerable attention in theoretical studies and numerical modeling due to its practical importance.[527] The models and methods developed range from linear stability models to detailed nonlinear numerical models based on boundary-element methods 528 5291 and Volume-Of-Fluid (VOF) method. 530 ... [Pg.320]

Liu YJ, NishimuraN, Otani Y (2005). Large-scale modeling of carbon-nanotube composites by a fast multipole boundary element method. Comput. Mater. Sci. 34 173-187. [Pg.218]

Field models estimate the fire environment in a space by numerically solving the conservation equations (i.e., momentum, mass, energy, diffusion, species, etc.) as a result of afire. This is usually accomplished by using a finite difference, finite element, or boundary element method. Such methods are not unique to fire protection they are used in aeronautics, mechanical engineering, structural mechanics, and environmental engineering. Field models divide a space into a large number of elements and solve the conservation equations within each element. The greater the number of elements, the more detailed the solution. The results are three-dimensional in nature and are very refined when compared to a zone-type model. [Pg.416]

There are many studies that imply numerical methods for the forward modelling of galvanic corrosion problem. These techniques are based mainly on boundary value problems (B VP) formulations in order to obtain or verify results, such as finite element method (FEM), finite difference method (FDM) or boundary element method (BEM). These methods are successfully used and showed to be very accurate to solve BVPs. Some of them are also implemented in commercial software. [Pg.174]

After finalizing the model equations and boundary conditions, the next task is to choose a suitable method to approximate the differential equations by a system of algebraic equations in terms of the variables at some discrete locations in space and time (called a discretization method). There are many such methods the most important are finite difference (FD), finite volume (FV) and finite element (FE) methods. Other methods, such as spectral methods, boundary element methods or cellular automata are used, but these are generally restricted to special classes of problems. All methods yield the same solution if the grid (number of discrete locations used to... [Pg.22]

For the coarse estimation of extruder size and screw speed, simple mass and energy balances based on a fixed output rate can be used. For the more detailed design of a twin-screw extruder configuration it is necessary to combine implicit experience knowledge with simulation techniques. Theses simulation techniques cover a broad range from specialized programs based on very simple models up to detailed Computational Fluid Dynamics (CFD) driven by Finite Element Analysis (FEA) or Boundary Element Method (BEM). [Pg.497]

Kawamoto (2) developed a two-dimensional model that is based on a double iterative boundary element method. The numerical method calculates the secondary current distribution and the current distribution within anisotropic resistive electrodes. However, the model assumes only the initial current distribution and does not take into account the effect of the growing deposit. Matlosz et al. (3) developed a theoretical model that predicts the current distribution in the presence of Butler-Volmer kinetics, the current distribution within a resistive electrode and the effect of the growing metal. Vallotton et al. (4) compared their numerical simulations with experimental data taken during lead electrodeposition on a Ni-P substrate and found limitations to the applicability of the model that were attributed to mass transfer effects. [Pg.84]

R.A. Adey, S.M. Niku, Computer modeling of corrosion using the boundary element method, in R. S. Munn (Ed.), ASTM STP 1154, ASTM International, Philadelphia, PA, 1992, pp. 248-263. [Pg.288]

In view of the solution of the potential model with non-linear boundary conditions an alternative Newton-Raphson iteration process was constructed in the case of the finite element method and an original one was obtained for the direct boundary element method. [Pg.93]

In this chapter we studied the simulation of electrode shape change governed by the potential model. That potential model was discretized by the boundary element method. [Pg.219]

Consequently, by this work it is proved that the boundary element method can give a considerable impetus to computer modelling of electrochemical systems. [Pg.222]


See other pages where Boundary element method model is mentioned: [Pg.141]    [Pg.142]    [Pg.607]    [Pg.6]    [Pg.115]    [Pg.26]    [Pg.323]    [Pg.205]    [Pg.639]    [Pg.640]    [Pg.647]    [Pg.39]    [Pg.449]    [Pg.134]    [Pg.142]    [Pg.35]    [Pg.37]    [Pg.48]    [Pg.89]    [Pg.20]    [Pg.66]    [Pg.382]    [Pg.497]    [Pg.612]    [Pg.615]    [Pg.103]    [Pg.2705]    [Pg.27]   


SEARCH



Boundary Element Method and Its Applications to the Modeling of MEMS Devices

Boundary element

Boundary element method

Boundary element method model calculations

Boundary methods

Element Model

Modeling methods

Modelling methods

Numerical modelling boundary element method model

© 2024 chempedia.info