Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boron compounds cross-coupling

Alkylboron boron compounds, cross-coupling reactions,... [Pg.45]

As is also true for silicon and tin compounds, the high stability of boronates, particularly cyclic esters, allows them to be incorporated into and carried through as substituents in a range of reaction types, such as the synthesis of pyrazole boronates for cross couplings (see 4.2.7.4). [Pg.51]

The first total synthesis of 87 was published in 1990 (90TL1523). 5-Hydroxyindole (88) was mesylated and then reduced with sodium cyanoborohydride to give an indoline which was brominated to afford the bromoindoline 89 in good yield (Scheme 33). Cross-coupling with ortho-formyl boronic acid under Suzuki conditions, followed by air oxidation of the resulting cyclized product, followed by reduction of the lactam formed with excess Red-Al gave the target compound 87. [Pg.100]

A drawback of the Heck-type reaction is that it is not strictly regioselective [119]. Depending on the substituents >1% of 1,1-diarylation is observed. Soluble 2,5-dialkoxy-PPVs 63 or 2-phenyl-PPV PPPV 93, without 1,1-diarylated moieties, were synthesized by Heitz et al. in a Suzuki-type cross coupling of substituted 1,4-phenylenediboronic acids and fran5-l,2-dibromoethylene, catalyzed by Pd(0) compounds [120]. However, about 3% of biaryl defect structures are observed in the coupling products (M up to 12,000), resulting from homocoupling of boronic acid functions. [Pg.208]

In contrast to the transition metals, where there is often a change in oxidation level at the metal during the reaction, there is usually no change in oxidation level for boron, silicon, and tin compounds. The synthetically important reactions of these three groups of compounds involve transfer of a carbon substituent with one (radical equivalent) or two (carbanion equivalent) electrons to a reactive carbon center. Here we focus on the nonradical reactions and deal with radical reactions in Chapter 10. We have already introduced one important aspect of boron and tin chemistry in the transmetallation reactions involved in Pd-catalyzed cross-coupling reactions, discussed... [Pg.783]

The first examples of microwave-assisted cross-couplings with organozinc compounds were recently reported [47]. In addition, the first high-speed synthesis of aryl boronates (Suzuki coupling reactants) has been performed under the action of single-mode irradiation with an in-situ-generated palladium carbene catalyst [48],... [Pg.395]

In this method, Furstner converts N-BOC protected pyrrole to the 2,5-dibromo compound (122) with NBS and this is followed by metalation and carbomethoxylation with t-butyl lithium in THF and subsequent trapping of the metalated species with methyl chloroformate to yield a pyrrole diester (123). Bromination of this diester at positions 3 and 4 with bromine in water followed by Suzuki cross-coupling with 3,4,5-trimethoxyphenyl boronic acid yields the symmetrical tetrasubstituted pyrrole (125). Base-mediated N-alkylation of this pyrrole with 4-methoxyphenethyl bromide produces the key Boger diester (126) and thereby constitutes a relay synthesis of permethyl storniamide A (120). [Pg.98]

The medicinal importance of 2-aryltryptamines led Chu and co-workers to develop an efficient route to these compounds (130) via a Pd-catalyzed cross-coupling of protected 2-bromotryptamines 128 with arylboronic acids 129 [137]. Several Suzuki conditions were explored and only a partial listing of the arylboronic acids is shown here. In addition, boronic acids derived from naphthalene, isoquinoline, and indole were successfully coupled with 128. The C-2 bromination of the protected tryptamines was conveniently performed using pyridinium hydrobromide perbromide (70-100%). 2-Phenyl-5-(and 7-)azaindoles have been prepared via a Suzuki coupling of the corresponding 2-iodoazaindoles [19]. [Pg.101]

Costanzo et al. <2002MI87> published the synthesis of the furyl-substituted pyrazolo[3,2-f][l,2,4]triazine derivative 146 by Suzuki coupling of the iodo compound 145 with 2-furylboronic acid. The yield was found to be moderate (38%). It may be important to mention that these authors also tried to transform 145 to a heteroaromatic boronic acid and to carry out cross-coupling of this compound with 3-bromofuran. Unfortunately, however, this approach failed and only homo-coupling occurred. [Pg.976]

Gauthier et al. <2005JOC5938> elaborated a synthetic route to 148, which is an important biologically active compound. These authors found that 147 can be subjected directly to cross-coupling process with the appropriate boronic acid, and there is no need for the halogenation of 147 to an intermediate for this cross-coupling. The product 148 was obtained in kilogram quantities in almost quantitative yield. [Pg.980]

When the metallic additive to the intermediate 374 was zinc dihalide (or another Lewis acid, such as aluminum trichloride, iron trichloride or boron trifluoride), a conjugate addition to electrophilic olefins affords 381 . In the case of the lithium-zinc transmetallation, a palladium-catalyzed Negishi cross-coupling reaction with aryl bromides or iodides allowed the preparation of arylated componnds 384 ° in 26-77% yield. In addition, a Sn2 allylation of the mentioned zinc intermediates with reagents of type R CH=CHCH(R )X (X = chlorine, bromine) gave the corresponding compounds 385 in 52-68% yield. ... [Pg.710]

The overall mechanism is closely related to that of the other cross-coupling methods. The aryl halide or triflate reacts with the Pd(0) catalyst by oxidative addition. The organoboron compound serves as the source of the second organic group by transmetala-tion. The disubstituted Pd(II) intermediate then undergoes reductive elimination. It appears that either the oxidative addition or the transmetalation can be rate-determining, depending on reaction conditions.134 With boronic acids as reactants, base catalysis is normally required and is believed to involve the formation of the more reactive boronate anion.135... [Pg.515]

Chemists working to develop new bioactive compounds try to be alert for new stable heterocycle platforms, but they can easily overlook some of the more, shall we say, exotic ones. When one thinks about the utility of boron in heterocyclic chemistry, the Suzuki cross-coupling reaction typically first comes to mind. In this valuable synthetic reaction <95CRV2457>, a boronic acid group is discarded under basic conditions during a Pd-catalyzed C-C bond formation. There are exceptions, of course, but few chemists appreciate that boron is an element that can be valuable to retain in a molecule so that its unique properties can be utilized. [Pg.1]


See other pages where Boron compounds cross-coupling is mentioned: [Pg.57]    [Pg.1754]    [Pg.77]    [Pg.209]    [Pg.218]    [Pg.218]    [Pg.47]    [Pg.178]    [Pg.182]    [Pg.480]    [Pg.21]    [Pg.33]    [Pg.38]    [Pg.300]    [Pg.724]    [Pg.739]    [Pg.1336]    [Pg.196]    [Pg.217]    [Pg.387]    [Pg.165]    [Pg.308]    [Pg.340]    [Pg.230]    [Pg.426]    [Pg.45]    [Pg.92]    [Pg.181]    [Pg.196]    [Pg.15]    [Pg.515]    [Pg.547]    [Pg.7]    [Pg.116]    [Pg.116]    [Pg.392]    [Pg.103]   
See also in sourсe #XX -- [ Pg.652 , Pg.653 ]




SEARCH



Boron compounds

Coupling compounds

Cross-coupling compounds

© 2024 chempedia.info