Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Borohydrides, synthesis

J.M. Lalancette et al., Reduction of Functional Groups with Sulfurated Borohydrides, Synthesis 1972, 526. J. Malek u. M. Cerny, Reduction of Organic Compounds by Alkoxyaluminohydrides, Synthesis 1972, 217. S.-C. Chen, Molecular Rearrangements in Lithium Aluminium Hydride Reduction, Synthesis 1974, 691. [Pg.785]

A similar reaction to the mercuric acetate/sodium borohydride synthesis of alcohols allows the conversion of alkenes to ethers. In this case, mercuric trifluoracetate is used ... [Pg.117]

Dimethyl behenamine Dimethyl erucylamine Dimethyl oleamine metal borohydride synthesis Diborane metal brightening Polyphosphoric acid... [Pg.5460]

Synthesis of Alkviamines. General Procedures. Method (A). The synthesis of p-phenethylamine is representative. A flame dried, nitrogen-flushed, 100 ml flask, equipped with a septum inlet, magnetic stirring bar and reflux condenser ivas cooled to 0°C. Sodium borohydride (9.5 mmol, 0.36 g) was placed in the flask followed by sequential addition of THF (13-15 ml) and BF3-Et20 (12 mmol, 1.5 ml) at 0°C. After the addition, the ice bath was removed and the contents were stirred at room temperature for 15 min. The solution... [Pg.139]

In this preparation, phenyi-2-nitropropene is reduced to phenyl-2-nitropropane with sodium borohydride in methanol, followed by hydrolysis of the nitro group with hydrogen peroxide and potassium carbonate, a variety of the Nef reaction. The preparation is a one-pot synthesis, without isolation of the intermediate. [Pg.165]

ANALGESICS,ANTIPYRETICS,AND ANTIINFLAMMATORY AGENTS] (Vol2) -sodium borohydrides in synthesis of [HYDRIDES] (Vol 13)... [Pg.960]

Although a few simple hydrides were known before the twentieth century, the field of hydride chemistry did not become active until around the time of World War II. Commerce in hydrides began in 1937 when Metal Hydrides Inc. used calcium hydride [7789-78-8J, CaH2, to produce transition-metal powders. After World War II, lithium aluminum hydride [16853-85-3] LiAlH, and sodium borohydride [16940-66-2] NaBH, gained rapid acceptance in organic synthesis. Commercial appHcations of hydrides have continued to grow, such that hydrides have become important industrial chemicals manufactured and used on a large scale. [Pg.297]

In pharmaceutical appHcations, the selectivity of sodium borohydride is ideally suited for conversion of high value iatermediates, such as steroids (qv), ia multistep syntheses. It is used ia the manufacture of a broad spectmm of products such as analgesics, antiarthritics, antibiotics (qv), prostaglandins (qv), and central nervous system suppressants. Typical examples of commercial aldehyde reductions are found ia the manufacture of vitamin A (29) (see Vitamins) and dihydrostreptomycia (30). An acyl azide is reduced ia the synthesis of the antibiotic chloramphenicol (31) and a carbon—carbon double bond is reduced ia an iatermediate ia the manufacture of the analgesic Talwia (32). [Pg.304]

Higher nitroalkanes are prepared from lower primary nitroalkanes by a one-pot synthesis (69). Successive condensations with aldehydes and acylating agents are followed by reduction with sodium borohydride. Overall conversions in the 75—80% range are reported. [Pg.101]

Industrial Synthetic Improvements. One significant modification of the Stembach process is the result of work by Sumitomo chemists in 1975, in which the optical resolution—reduction sequence is replaced with a more efficient asymmetric conversion of the meso-cyc. 02Lcid (13) to the optically pure i7-lactone (17) (Fig. 3) (25). The cycloacid is reacted with the optically active dihydroxyamine [2964-48-9] (23) to quantitatively yield the chiral imide [85317-83-5] (24). Diastereoselective reduction of the pro-R-carbonyl using sodium borohydride affords the optically pure hydroxyamide [85317-84-6] (25) after recrystaUization. Acid hydrolysis of the amide then yields the desired i7-lactone (17). A similar approach uses chiral alcohols to form diastereomic half-esters stereoselectivity. These are reduced and direedy converted to i7-lactone (26). In both approaches, the desired diastereomeric half-amide or half-ester is formed in excess, thus avoiding the cosdy resolution step required in the Stembach synthesis. [Pg.30]

Another viable method for the synthesis of L-foUc acid (1) starts from 6-formylpterin (23). The diester of L-glutamic acid (24) is condensed with 6-formylpterin (23). Reduction of the Schiff base with sodium borohydride is followed by hydrolysis to yield L-foUc acid (37). [Pg.39]

The classical synthesis iavolves the dissolution of a 33% Sb—67% Zn alloy by hydrochloric acid the evolved gases contain up to 14% stibiae. A detailed procedure usiag a Sb—Mg alloy has also beea described (16). Aluminum hydride or alkaU metal borohydrides have been used to reduce antimony(III) ia acidic aqueous solutioa to produce stibiae. A 23.6% yield of stibiae, based oa the borohydride used, has beea reported (17). A 78% yield based oa Sb has beea obtaiaed by gradually adding a solutioa that is 0.4 Min SbCl and saturated ia NaQ, to aqueous NaBH at mol ratios of NaBH iSbQ. >10 (18). [Pg.202]

Synthesis. The parent compound, bora2iae [6569-51-3] is best prepared by a two-step process involving formation of B-trichlorobora2iQe followed by reduction with sodium borohydride. These reactions have been studied ia some detail (96). [Pg.265]

Ghromium(III) Compounds. Chromium (ITT) is the most stable and most important oxidation state of the element. The E° values (Table 2) show that both the oxidation of Cr(II) to Cr(III) and the reduction of Cr(VI) to Cr(III) are favored in acidic aqueous solutions. The preparation of trivalent chromium compounds from either state presents few difficulties and does not require special conditions. In basic solutions, the oxidation of Cr(II) to Cr(III) is still favored. However, the oxidation of Cr(III) to Cr(VI) by oxidants such as peroxides and hypohaUtes occurs with ease. The preparation of Cr(III) from Cr(VI) ia basic solutions requires the use of powerful reducing agents such as hydra2ine, hydrosulfite, and borohydrides, but Fe(II), thiosulfate, and sugars can be employed in acid solution. Cr(III) compounds having identical counterions but very different chemical and physical properties can be produced by controlling the conditions of synthesis. [Pg.135]

The least troublesome routes to 3,4-dihydro- and 1,2,3,4-tetrahydro-quinazoline are probably the reduction of quinazoline by sodium borohydride, in water for the former or in methanol for the latter. Both must be isolated as salts. The dihydroquinazoline may be formed also by reduction with LAH in ether (65JHC157). In contrast, 5,6,7,8-tetrahy-droquinazoline is best made by primary synthesis from 2-formylcyclohexanone and for-mamide (57CB942) or from cyclohexanone and trisformamidomethane (60CB1402). [Pg.124]

J. Seyden-Penne, Reductions by the Alumino- and Borohydrides in Organic Synthesis, 2nd Edn, J. Wiley Sons, New York, 1997. ISBN 1560819391. [Pg.70]


See other pages where Borohydrides, synthesis is mentioned: [Pg.149]    [Pg.149]    [Pg.319]    [Pg.54]    [Pg.60]    [Pg.60]    [Pg.193]    [Pg.316]    [Pg.402]    [Pg.743]    [Pg.820]    [Pg.931]    [Pg.1057]    [Pg.213]    [Pg.323]    [Pg.293]    [Pg.438]    [Pg.439]    [Pg.49]    [Pg.29]    [Pg.243]    [Pg.304]    [Pg.58]    [Pg.575]    [Pg.671]    [Pg.792]    [Pg.795]    [Pg.74]   
See also in sourсe #XX -- [ Pg.241 ]

See also in sourсe #XX -- [ Pg.241 ]




SEARCH



Alcohols synthesis, sodium borohydride

Lithium borohydride synthesis

Oximes synthesis, sodium borohydride

Secondary alcohols synthesis, sodium borohydride

© 2024 chempedia.info