Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Borane reduction, chiral

In 1994, the scope of this p-hydroxy sulfoximine ligand was extended to the borane reduction of ketimine derivatives by these workers. The corresponding chiral amines were formed with enantioselectivities of up to 72% ee, as shown in Scheme 10.57. It was found that the A -substituent of the ketimine had a major influence on the asymmetric induction, with a ketoxime thioether (SPh) being the most successful substrate. [Pg.337]

Other S/N ligands have been investigated in the enantioselective catalytic reduction of ketones with borane. Thus, Mehler and Martens have reported the synthesis of sulfur-containing ligands based on the L-methionine skeleton and their subsequent application as new chiral catalysts for the borane reduction of ketones." The in situ formed chiral oxazaborolidine catalyst has been used in the reduction of aryl ketones, providing the corresponding alcohols in nearly quantitative yields and high enantioselectivities of up to 99% ee, as shown in Scheme 10.60. [Pg.338]

Prior literature indicated that olefins substituted with chiral sulfoxides could indeed be reduced by hydride or hydrogen with modest stereoselectivity, as summarized in Scheme 5.10. Ogura et al. reported that borane reduction of the unsaturated sulfoxide 42 gave product 43 in 87 13 diastereomer ratio and D20 quench of the borane reduction mixture gave the product 43 deuterated at the a-position to the sulfoxide, consistent with the hydroboration mechanism [10a]. In another paper, Price et al. reported diastereoselective hydrogenation of gem-disubstituted olefin rac-44 to 45 with excellent diastereoselectivity using a rhodium catalyst [10b],... [Pg.152]

We have developed the efficient synthesis of the SERM drug candidate 1 and successfully demonstrated the process on a multiple kilogram scale to support the drug development program. A novel sulfoxide-directed borane reduction of vinyl sulfoxides was discovered. The mechanistic details of this novel reaction were explored and a plausible mechanism proposed. The sequence of asymmetric oxidation of vinyl sulfoxides followed by stereospecific borane reduction to make chiral dihydro-1,4-benzoxathiins was applied to the asymmetric synthesis of a number of other dihydro-1,4-benzoxathiins including the sweetening agent 67. [Pg.162]

New chiral oxazaborolidines that have been prepared from both enantiomers of optically active inexpensive a-pinene have also given quite good results in the asymmetric borane reduction of prochiral ketones.92 Borane and aromatic ketone coordinate to this structurally rigid oxazaborolidine (+)- or (—)-94, forming a six-membered cyclic chair-like transition state (Scheme 6-41). Following the mechanism shown in Scheme 6-37, intramolecular hydride transfer occurs to yield the product with high enantioselectivity. With aliphatic ketones, poor ee is normally obtained (see Table 6-9). [Pg.370]

Since the discovery of the CBS catalyst system, many chiral //-amino alcohols have been prepared for the synthesis of new oxazoborolidine catalysts. Compounds 95 and 96 have been prepared93 from L-cysteine. Aziridine carbi-nols 97a and 97b have been prepared94 from L-serine and L-threonine, respectively. When applied in the catalytic borane reduction of prochiral ketones, good to excellent enantioselectivity can be attained (Schemes 6-42 and 6-43). [Pg.370]

Methods such as borane reduction and BINAL-H reduction are discussed in Chapter 6, and indeed ketone 89 can be reduced by chiral borane, providing the co-side chain 90 at 65% yield and 97% ee (Scheme 7-26). [Pg.416]

Scheme 7-26. Asymmetric synthesis of the chiral co-side chain via chiral borane reduction. Scheme 7-26. Asymmetric synthesis of the chiral co-side chain via chiral borane reduction.
Enantioselective reduction of ketones.1 The ability of diborane in combination with the vic-amino alcohol (S)-2-amino-3-methyl-l,l-diphenyl-l-butanol (12, 31) to effect enantioselective reduction of alkyl aryl ketones involves formation of an intermediate chiral oxazaborolidine, which can be isolated and used as a catalyst for enantioselective borane reductions (equation I). [Pg.239]

Enantioselective borane reduction of prochiral ketones catalysed by chiral oxabor-olidines is of considerable synthetic utility, but the catalytic cycle has to compete with direct borane reduction of the ketone. Accordingly, precise kinetic data on the latter would help optimize conditions for the former. Such a study has been... [Pg.26]

Enantioselective borane reduction of ketones catalyzed by chiral oxazaborolidines. [Pg.154]

Borane reduction catalyzed by chiral oxazaborolidines (CBS reduction, CBS = Corey, Bakshi, and Shibata) exhibits excellent enantio- and chemoselectiv-ity for a wide variety of ketonic substrates (Figure 1.27). This reaction was originally developed as a stoichiometric system consisting of diphenylvalinol and borane, ° but was later extended to a useful catalytic method. Because of the high efficiency of this reaction, many chiral oxazaborolidines have been synthesized from p-amino alcohols.Among them the prolinol-derived oxazaboro-lidine is one of the most widely used catalysts. ... [Pg.22]

Corey extended the utility of this catalytic hydroboration chemistry remarkably (38). Scheme 15 shows some examples of the highly en-antioselective asymmetric borane reduction of ketones. The well-designed chiral oxazaborolidines, which act as catalyst precursors, have... [Pg.76]

Organometallic compounds asymmetric catalysis, 11, 255 chiral auxiliaries, 266 enantioselectivity, 255 see also specific compounds Organozinc chemistry, 260 amino alcohols, 261, 355 chirality amplification, 273 efficiency origins, 273 ligand acceleration, 260 molecular structures, 276 reaction mechanism, 269 transition state models, 264 turnover-limiting step, 271 Orthohydroxylation, naphthol, 230 Osmium, olefin dihydroxylation, 150 Oxametallacycle intermediates, 150, 152 Oxazaborolidines, 134 Oxazoline, 356 Oxidation amines, 155 olefins, 137, 150 reduction, 5 sulfides, 155 Oxidative addition, 5 amine isomerization, 111 hydrogen molecule, 16 Oxidative dimerization, chiral phenols, 287 Oximes, borane reduction, 135 Oxindole alkylation, 338 Oxiranes, enantioselective synthesis, 137, 289, 326, 333, 349, 361 Oxonium polymerization, 332 Oxo process, 162 Oxovanadium complexes, 220 Oxygenation, C—H bonds, 149... [Pg.196]

SCHEME 17. Synthetic application chiral secondary alcohols produced by the asymmetric borane reduction. [Pg.272]

Researchers at Sepracor later disclosed the use of a new class of chiral oxazaborolidines derived from r/. v-aminoindanol in the enantioselective borane reduction of a-haloketones.6,7 The 5-hydrogen oxazaborolidine ligand 10 was prepared in situ from d,v-aminoindanol 1 and BH3 THF.8 Stock solutions of 5-methyl oxazaborolidine 11-16 were obtained by reaction of the corresponding N-alkyl aminoindanol with trimethyl boroxine.6,7 5-Methyl catalyst 11 was found to be more selective (94% ee at 0°C) than the 5-hydrogen catalyst 10 (89% ee at 0°C), and enantioselectivities with 11 increased at lower temperatures (96% ee at -20°C). The catalyst structure was modified by introduction of A-a I kyI substituents. As a general trend, reactivities and selectivities decreased as the steric bulk or the chelating ability of the A -alkyl substituent increased (Scheme 17.4). [Pg.323]

A chiral lanthanoid complex, which was prepared similarly to La-(/ )-17,7 23 is an effective catalyst for asymmetric reduction of ketones.102 With 10 mol % of the catalyst, borane reduction of ketones proceeds very smoothly to give alcohols in up to 62% ee (Figure 48). [Pg.248]

Figure 48. Catalytic, asymmetric borane reduction with the new chiral La complex. Figure 48. Catalytic, asymmetric borane reduction with the new chiral La complex.
The oxazaborolidine-catalyzed borane reduction to prepare (R)-1 is an improvement over existing methods such as the p-chlorodiisopinocampheylborane reduction,6 and enzymatic resolution14 for several reasons. First, the reaction uses an easily obtained catalytic reducing agent that provides the chiral alcohol in 92% ee. Secondly, the reaction proceeds at a reasonable rate (6-8 hr) and affords the chiral alcohol (92% ee) In nearly quantitative yield (97%). Finally, the work-up, isolation and purification of the product is straightforward and requires no column chromatography, only bulb-to-bulb distillation and recrystallization, affording (R)-1 in 75% yield with 97% ee. In addition, the catalyst precursor, (S)-a,a-diphenylpyrrolidinemethanol. can be easily recovered in excellent yield. [Pg.47]

Asymmetric Borane Reduction. The reaction of ATBH with trimethylboroxine by refluxing in toluene affords the chiral B-methyl oxazaborolidine in high yield (eq 2) This oxaz-aborolidine can serve as an efficient catalyst for the asymmetric borane reduction ofprochiral ketones (eq 3). The corresponding chiral secondary alcohols are obtained in high yields with good enantioselectivities. [Pg.39]

The in situ generated catalyst from ATBH and trimethyl borate has also been used in the stereoselective reduction of a-oxoketoxime ethers to prepare the corresponding chiral 1,2-amino alcohols. Thus the asymmetric borane reduction of buta-2,3-dione monoxime ether followed by acidic work-up and subsequent reaction with benzyloxycarbonyl chloride affords a 90% yield of 7V-(Z)-3-aminobutan-2-ol with excellent enantioselectivities (eq 5). A trityl group in the oxime ether is required for high enantioselectivity. This method has been successively applied to both cyclic and acyclic a-oxoketoxime ethers. [Pg.39]

Reduction of C=0 and C=N Bonds. Asymmetric reductions of prochiral ketones (19) to the corresponding chiral alcohols (20) using (S)-proline-modified borohydride reagents as the reductant have been published. The borane reductions of ketones (19) employing (S)-proline as chiral mediator proceeds with enantiomeric... [Pg.481]

The first report of a polymer-supported oxazaborolidine appeared in 1985 [37]. The polymer-supported chiral ligand amino alcohol (27) was prepared by reaction of chlor-omethylated polystyrene resin and enantiopure amino alcohol 26 with a phenolic hydroxyl group (Eq. 10). Borane reduction of ketones by use of polymer-supported oxazaborolidines proceeded very smoothly to give the corresponding chiral alcohol in quantitative yield. For example, the reduction of butyl phenyl ketone afforded 1-phe-nylpentan-l-ol in 97 % ee (27, Eq. 11). This is somewhat higher than that obtained by... [Pg.953]


See other pages where Borane reduction, chiral is mentioned: [Pg.336]    [Pg.339]    [Pg.343]    [Pg.158]    [Pg.161]    [Pg.359]    [Pg.122]    [Pg.234]    [Pg.463]    [Pg.208]    [Pg.192]    [Pg.463]    [Pg.20]    [Pg.723]    [Pg.20]    [Pg.528]    [Pg.321]    [Pg.213]    [Pg.482]    [Pg.170]    [Pg.469]    [Pg.208]    [Pg.213]    [Pg.300]    [Pg.14]    [Pg.955]   
See also in sourсe #XX -- [ Pg.2 , Pg.52 ]




SEARCH



Asymmetric reduction chiral boranes

Borane reduction

Chiral reductions

© 2024 chempedia.info